Research progress on aerodynamic test technology of hypersonic wind tunnel for air-breathing aerocraft
-
摘要: 机体/推进一体化吸气式飞行器结构布局形式特殊,为精确获得其气动力特性风洞试验数据,必须发展可靠的风洞试验技术。针对一体化高超声速飞行器气动力风洞试验需求,在中国空气动力研究与发展中心的高超声速风洞上发展了吸气式飞行器通气模型测力试验技术、尾喷流模拟测力试验技术、铰链力矩测量试验技术、通气模型动导数测量试验技术和飞行器表面摩阻测量试验技术,为获得可靠的机体/推进一体化吸气式飞行器高超声速风洞气动力特性数据提供技术支撑。Abstract: To get accurate wind tunnel test results with high precision for the airframe/propulsion integrated air-breathing hypersonic flight vehicles, reliable wind tunnel test techniques must be developed according to the vehicle's special configuration and structure. To satisfy the requirements of hypersonic wind tunnel tests for those airframe/propulsion integrated vehicles, the flow-through model aerodynamic force measurement technique, rear-jet interference test technique, hinge-moment measurement technique, flow-through model dynamic derivative test technique, and the surface skin-friction measurement technique have been developed in hypersonic wind tunnels of CARDC(China Aerodynamics Research and Development Center), which give massive support to those efforts to get authentic hypersonic wind tunnel test results for the design and evaluation of airframe/propulsion integrated air-breathing hypersonic flight vehicles.
-
-
表 1 带喷流测力试验结果重复性精度
Table 1 Repeatability accuracy of aerodynamic test data in jet-simulation tests
精度 α/(°) CN/% CA/% Cm/% 精度
σα-4 0.21 0.03 0.05 -2 0.15 0.03 0.10 0 0.14 0.04 0.05 2 0.28 0.04 0.11 4 0.29 0.05 0.06 6 0.36 0.05 0.12 相对重复性精度
σα/Cmax-4 0.43 0.25 0.08 -2 0.32 0.26 0.17 0 0.14 0.27 0.08 2 0.30 0.35 0.19 4 0.32 0.31 0.10 6 0.59 0.36 0.20 表 2 试验自由来流参数
Table 2 Test parameters of free stream
马赫数
Ma总压pt
/MPa总温Tt
/K静压p
/Pa动压q/Pa 单位雷诺数Re/L
/m-16 2.8 470 1773 44 690 2.61×107 表 3 某通气模型动导数试验重复性精度
Table 3 Data repeatability accuracy of a flow-through
序号 通道 迎角 0° 4° 8° 1 俯仰 2.9% 6.9% 4.1% 2 偏航 8.5% 3.1% 9.8% 3 滚转 2.1% 11.2% 8.8% 表 4 传感器样机静态校准性能参数
Table 4 Static calibration results of MEMS skin-friction sensors
样机 量程
/Pa分辨率
/Pa系数kc
/(Pa·pF-1)重复性精度
/%线性度
/%1# 0~100 1 28.95 0.98 1.46 2# 0~100 1 39.48 1.14 0.96 3# 0~100 1 37.40 1.33 1.28 4# 0~100 1 38.28 1.15 1.26 6# 0~100 1 36.67 0.83 1.32 7# 0~100 1 44.94 0.42 0.54 9# 0~100 1 33.64 4.73 0.85 -
[1] Holland S D, Woods W C, Engeluand W C. Hyper-X research vehicle experimental aerodynamics test program overview[J]. Journal of Spacecraft and Rockets, 2001, 38(6):828-835. DOI: 10.2514/2.3772
[2] Engeluand W C, Holland S D, Charles E C Jr. Aerodynamic datebase development for the Hyper-X airframe integrated scramjet propulsion experiments[R]. AIAA-2000-4006, 2000.
[3] 罗金玲, 李超, 徐锦.高超声速飞行器机体/推进一体化设计的启示[J].航空学报, 2015, 36(1):39-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201501005 Luo J L, Li C, Xu J. Inspiration of hypersonic vehicle with airframe/propulsion integrated design[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):39-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201501005
[4] 吴颖川, 贺元元, 贺伟, 等.吸气式高超声速飞行器机体推进一体化技术研究进展[J].航空学报, 2015, 36(1):245-260. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501020 Wu Y C, He Y Y, He W, et al. Progress in airframe-propulsion integration technology of airbreathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):245-260. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501020
[5] 恽起麟.实验空气动力学[M].北京:国防工业出版社, 1991. [6] 恽起麟.风洞试验[M].北京:国防工业出版社, 2002. [7] 许晓斌.常规高超声速风洞与试验技术[M].北京:国防工业出版社, 2015. [8] 赵忠良, 杨晓娟, 蒋卫民, 等.高超声速飞行器通流模拟方法与风洞验证技术[J].航空学报, 2014, 35(11):2932-2938. http://d.old.wanfangdata.com.cn/Periodical/hkxb201411004 Zhao Z L, Yang X J, Jiang W M, et al. Through-flow simulation method and wind tunnel validation technique for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2932-2938. http://d.old.wanfangdata.com.cn/Periodical/hkxb201411004
[9] 金亮, 柳军, 罗世彬, 等.高超声速一体化飞行器冷流状态气动特性研究[J].实验流体力学, 2010, 24(1):42-45. DOI: 10.3969/j.issn.1672-9897.2010.01.008 Jin L, Liu J, Luo S B, et al. Aerodynamic characterization of an integrated hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):42-45. DOI: 10.3969/j.issn.1672-9897.2010.01.008
[10] 吴军强, 徐明方, 张毅峰.带多个进气道的导弹通气模型测力试验技术研究[J].流体力学实验与测量, 2000, 14(3):52-56. DOI: 10.3969/j.issn.1672-9897.2000.03.010 Wu J Q, Xu M F, Zhang Y F. Force measurement test technique research of flow through model of the multi-inlet missile[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(3):52-56. DOI: 10.3969/j.issn.1672-9897.2000.03.010
[11] 张红英, 程克明, 伍贻兆.高超声速飞行器内流道流态及其对全机气动力影响的实验研究[J].空气动力学学报, 2009, 27(2):193-198. DOI: 10.3969/j.issn.0258-1825.2009.02.009 Zhang H Y, Cheng K M, Wu Y Z. Experimental study of flow characteristics and the influence for a hypersonic flight vehicle[J]. Acta Aerodynamica Sinica, 2009, 27(2):193-198. DOI: 10.3969/j.issn.0258-1825.2009.02.009
[12] Stephen M R, Ethiraj V, Earl R K, et al. Hypersonic single expansion ramp nozzle simulation[J]. Journal of Spacecraft and Rockets, 1992, 29(6):749-755. DOI: 10.2514/3.25527
[13] Hirschen C, Gülhan A, Beck W, et al. Experimental study of the interaction between internal and external flows of a scramjet nozzle using various diagnostic techniques[R]. AIAA-2007-5088, 2007.
[14] Huebner L D, Witte D W, Andrews E H Jr. Exhaust simulation testing of a hypersonic air-breathing model at transonic speeds[R]. AIAA-2003-7001, 2003.
[15] 贺旭照, 秦思, 曾学军, 等.模拟飞行条件下的吸气式高超声速飞行器后体尾喷流干扰问题实验方案研究[J].推进技术, 2014, 35(10):1310-1316. http://d.old.wanfangdata.com.cn/Conference/8358929 He X Z, Qin S, Zeng X J, et al. Experiment scheme research on afterbody nozzle plume interference of air-breathing hyper-sonic vehicle fly condition[J]. Journal of Propulsion Technology, 2014, 35(10):1310-1316. http://d.old.wanfangdata.com.cn/Conference/8358929
[16] 曾庆华, 黄琳, 夏智勋, 等.发动机喷流对飞行器飞行姿态影响的研究[J].宇航学报, 2002, 23(4):73-76. DOI: 10.3321/j.issn:1000-1328.2002.04.015 Zeng Q H, Huang L, Xia Z X, et al. The simulation of nozzle exhaust effects on aircraft's flight attitude[J]. Journal of Astronautics, 2002, 23(4):73-76. DOI: 10.3321/j.issn:1000-1328.2002.04.015
[17] 林敬周, 田正雨, 王志坚.三维高超声速底部喷流干扰流场数值模拟与试验研究[J].实验流体力学, 2006, 20(4):49-53. DOI: 10.3969/j.issn.1672-9897.2006.04.009 Lin J Z, Tian Z Y, Wang Z J. Numerical and experimental study of base jet interaction in hypersonic external flow[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4):49-53. DOI: 10.3969/j.issn.1672-9897.2006.04.009
[18] 孙振华, 吴催生, 徐东来.导弹尾流对后弹体影响的CFD仿真分析[J].弹箭与制导学报, 2011, 31(3):157-159, 168. DOI: 10.3969/j.issn.1673-9728.2011.03.046 Sun Z H, Wu C S, Xu D L. CFD study of the effect of rocket plume on thermal environment of aft-missile[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(3):157-159, 168. DOI: 10.3969/j.issn.1673-9728.2011.03.046
[19] 司芳芳, 袁先旭, 李建强, 等.推力转向喷流与高速主流干扰参数影响规律的数值模拟研究[J].空气动力学学报, 2012, 30(5):583-591. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201205005 Si F F, Yuan X X, Li J Q, et al. The study of parameters' infection between vectoring jet and high speed main flows interaction[J]. Acta Aerodynamica Sinica, 2012, 30(5):583-591. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201205005
[20] 许晓斌, 舒海峰, 谢飞, 等.通气模型内流道阻力直接测量技术[J].推进技术, 2013, 34(3):311-315. http://d.old.wanfangdata.com.cn/Periodical/tjjs201303005 Xu X B, Shu H F, Xie F, et al. Technique investigation on flow-through model inner-flow drag straightway measured by strain-gauge balance[J]. Journal of Propulsion Technology, 2013, 34(3):311-315. http://d.old.wanfangdata.com.cn/Periodical/tjjs201303005
[21] 许晓斌, 舒海峰, 徐筠, 等.升力体飞行器尾喷流模拟气动力试验方法研究[J].空气动力学学报, 2016, 34(1), 86-90. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201601015 Xu X B, Shu H F, Xu Y, et al. Experimental investigation on lifting body aerodynamic force with simulated aft-body jet[J]. Acta Aerodynamica Sinica, 2016, 34(1), 86-90. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201601015
[22] 李周复.风洞特种试验技术[M].北京:航空工业出版社, 2010. [23] 熊琳, 刘展, 陈河梧.铰链力矩天平技术及其在高超声速风洞的应用研究[J].实验流体力学, 2007, 21(3):54-57. DOI: 10.3969/j.issn.1672-9897.2007.03.011 Xiong L, Liu Z, Chen H W. Hinge moment balance technique and application in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3):54-57. DOI: 10.3969/j.issn.1672-9897.2007.03.011
[24] 陈丽, 赵协和, 刘维亮, 等.提高测量最大铰链力矩试验数据精准度的有效模拟技术研究[J].流体力学实验与测量, 2002, 16(3):51-56. DOI: 10.3969/j.issn.1672-9897.2002.03.009 Chen L, Zhao X H, Liu W L, et al. Simulation technique for improving data precision and accuracy of maximum hinge moment test[J]. Experiments and Measurements in Fluid Mechanics, 2002, 16(3):51-56. DOI: 10.3969/j.issn.1672-9897.2002.03.009
[25] 刘绪, 赵云飞, 王东方, 等.高超声速内外流一体化飞行器动态特性[J].弹道学报, 2013, 25(3):38-43. DOI: 10.3969/j.issn.1004-499X.2013.03.008 Liu X, Zhao Y F, Wang D F, et al. Dynamic characteristics of hypersonic integrative vehicle with internal and external flow[J]. Journal of Ballistics, 2013, 25(3):38-43. DOI: 10.3969/j.issn.1004-499X.2013.03.008
[26] 唐志共.高超声速气动力试验[M].北京:国防工业出版社, 2004. [27] 袁先旭, 陈琦, 谢昱飞, 等.动导数数值预测中的相关问题[J].航空学报, 2016, 37(8):2385-2394. http://d.old.wanfangdata.com.cn/Periodical/hkxb201608005 Yuan X X, Chen Q, Xie Y F, et al. Problems in numerical prediction of dynamic stability derivatives[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2385-2394. http://d.old.wanfangdata.com.cn/Periodical/hkxb201608005
[28] 郭雷涛. Ф1米高超声速风洞动导数试验技术研究[D].绵阳: 中国空气动力研究与发展中心, 2013. Guo L T. Investigation on dynamic derivative test technique in Ф1m hypersonic wind tunnel[D]. Mianyang: China Aero-dynamics Research and Development Center, 2013.
[29] 陈建中, 赵忠良, 范长海, 等. 2m量级高速风洞强迫振动动导数试验技术研究[J].空气动力学学报, 2016, 34(5):598-605. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201605009 Chen J Z, Zhao Z L, Fan C H, et al. Forced-oscillation dynamic derivative test techniques in 2 meter scale high speed wind tunnels[J]. Acta Aerodynamica Sinica, 2016, 34(5):598-605. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201605009
[30] 潘金柱, 张杰, 才义, 等.高速风洞动导数试验精准度提升研究[J].空气动力学学报, 2016, 34(5):606-610. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201605010 Pan J Z, Zhang J, Cai Y, et al. Investigation on the high-speed wind tunnel dynamic derivative test accuracy promotion[J]. Acta Aerodynamica Sinica, 2016, 34(5):606-610. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201605010
[31] Silvester T B, Morgan R G. Skin-friction measurements and flow establishment within a long duct at super orbital speeds[J]. AIAA Journal, 2008, 46(2):527-536. DOI: 10.2514/1.32668
[32] 吕治国, 李国君, 赵荣娟, 等.激波风洞高超声速摩阻直接测量技术研究[J].实验流体力学, 2013, 27(6):81-85. DOI: 10.3969/j.issn.1672-9897.2013.06.015 Lyu Z G, Li G J, Zhao R J, et al. Direct measurement of skin friction at hypersonic shock tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6):81-85. DOI: 10.3969/j.issn.1672-9897.2013.06.015
[33] 马洪强, 高贺, 毕志献.高超声速飞行器相关的摩擦阻力直接测量技术[J].实验流体力学, 2011, 25(4):83-88. DOI: 10.3969/j.issn.1672-9897.2011.04.016 Ma H Q, Gao H, Bi Z X. Direct measurement of skin friction for hypersonic flight vehicle[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4):83-88. DOI: 10.3969/j.issn.1672-9897.2011.04.016
[34] Meloy J, Griffin J, Sells J, et al. Experimental verification of a MEMS based skin friction sensor for quantitative wall shear stress measurement[R]. AIAA-2011-3995, 2011.
[35] 刘凯.金属基多梁圆盘式敏感质量加速度计相关技术研究[D].上海: 上海交通大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10248-1013003577.htm Liu K. Related techniques of micro-accelerometer based on metal and multi-beam disc mass[D]. Shanghai: Shanghai Jiaotong University, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10248-1013003577.htm