Experimental study on drag reduction and anti-shearing characteristics of xanthan gum solution with NaCl
-
摘要: 通过实验研究了添加氯化钠(NaCl)的黄原胶盐溶液(XG/NaCl)在直径为20mm的光滑圆管中的减阻及抗剪切特性,得到了不同质量分数黄原胶盐溶液的减阻率随流动雷诺数及运行时间的变化关系曲线,并与黄原胶水溶液(XG)的减阻特性及抗剪切特性进行了对比。结果表明:相比黄原胶水溶液,添加NaCl的黄原胶盐溶液减阻率随雷诺数的增大较快趋于稳定,但其减阻率在较低雷诺数下低于黄原胶水溶液的减阻率,在较高雷诺数下才明显高于黄原胶水溶液的减阻率,且存在减阻剂黄原胶与NaCl的最佳配比;黄原胶盐溶液具有较强的耐温性;在连续循环剪切作用下,不同质量分数的黄原胶盐溶液均具有较好的抗剪切特性。Abstract: Experimental study on the drag reduction and the anti-shearing characteristics of xanthan gum(XG) solution with NaCl addition in smooth pipes with diameter of 20mm was conducted. For different mass fractions of XG solution with NaCl addition(XG/NaCl solution), the relationships of the drag reduction efficiency with the flow Reynolds number and the shearing duration time were obtained and compared with the drag reduction and anti-shearing characteristics of XG solution. The results show that the drag reduction percentage of XG/NaCl solution tends to stabilize rapidly with increasing Reynolds number, and it is lower than that of the XG aqueous solution in the low Reynolds number regime, but significantly higher than that of XG aqueous solution in high Reynolds number regime. There exists a best ratio of XG to NaCl for the drag reduction. The XG/NaCl solution has good temperature resistance. In the process of continuous shearing of pump, different mass fractions of XG/NaCl solution all have high resistance to the mechanical degradation.
-
-
-
[1] Zhao D J, Liu H N, Guo W, et al. Effect of inorganic cations on the rheological properties of polyacrylamide/xanthan gum solution[J]. Journal of Natural Gas Science & Engineering, 2016, 31:283-292. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ea762c40028c1a3f382538cf0bc57557
[2] Lim G H, Choi H J, Renou F, et al. Effects of hydrophobic modification of xanthan gum on its turbulent drag reduction characteristics[J]. Journal of Industrial & Engineering Chemistry, 2017, 54:146-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a1c95a97f57a04e579107baffbb92733
[3] 孙琳, 魏鹏, 傅强, 等.耐温抗盐型黄原胶体系在油田开发中的应用研究进展[J].应用化工, 2014, 43(12):2279-2284, 2291. http://d.old.wanfangdata.com.cn/Periodical/sxhg201412037 Sun L, Wei P, Fu Q, et al. Research advance of xanthan system With temperature resistance and salt resistant in the oilfield development[J]. Applied Chemical Industry, 2014, 43(12):2279-2284, 2291. http://d.old.wanfangdata.com.cn/Periodical/sxhg201412037
[4] Hong C H, Choi H J, Zhang K, et al. Effect of salt on turbulent drag reduction of xanthan gum[J]. Carbohydrate Polymers, 2015, 121:342-347. DOI: 10.1016/j.carbpol.2014.12.015
[5] Lumley J L. Drag reduction by additives[J]. Annual Review of Fluid Mechanics, 1969, 1(1):367-384. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_nlin%2f0609066
[6] Sohn J I, Kim C A, Choi H J, et al. Drag-reduction effectiveness of XG in a rotating disk apparatus[J]. Carbohydrate Polymers, 2001, 45(1):61-68. DOI: 10.1016/S0144-8617(00)00232-0
[7] Wyatt N B, Gunther C M, Liberato M W. Drag reduction effectiveness of dilute and entangled xanthan in turbulent pipe flow[J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(1-2):25-31. DOI: 10.1016/j.jnnfm.2010.10.002
[8] Carmona J A, Ramírez P, Calero N, et al. Large amplitude oscillatory shear of xanthan gum solutions. Effect of sodium chloride (NaCl) concentration[J]. Journal of Food Engineering, 2014, 126(1):165-172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1d7376c7f200fced9aaf1b30606e64d5
[9] 马宗豪, 卞永宁.非牛顿流体在正弦波壁管内的减阻特性[J].实验流体力学, 2010, 24(5):31-35. DOI: 10.3969/j.issn.1672-9897.2010.05.007 Ma Z H, Bian Y N. Drag reduction of non-Newtonian fluid in a sinusoidal wavy-walled tube[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(5):31-35. DOI: 10.3969/j.issn.1672-9897.2010.05.007
[10] Gasljevic K, Hall K, Chapman D, et al. Invariant type-B charac-teristics of drag-reducing microalgal biopolymer solutions[J]. Experiments in Fluids, 2017, 58(5):54. DOI: 10.1007/s00348-017-2338-6
[11] 禹燕飞, 李昌烽, 赵文斌, 等.一种高分子聚合物溶液的全流态减阻特性实验装置: CN 103115849 A. 2013-05-22. Yu Y F, Li C F, Zhao W B, et al. An experimental device for reducing the total flow resistance of polymer solution: CN 103115849 A. 2013-05-22.
[12] White F M. Fluid mechanics[M]. 4th ed. New York:McGraw-Hill Education, 2015.
[13] 李昌烽, 禹燕飞, 赵文斌, 等.黄原胶水溶液管道流动减阻特性的试验[J].江苏大学学报:自然科学版, 2015, 36(1):30-35. http://d.old.wanfangdata.com.cn/Periodical/jslgdxxb201501006 Li C F, Yu Y F, Zhao W B, et al. Experiment on drag reduction characteristics of xanthan gum solution in pipe flow[J]. Journal of Jiangsu University:Natural Science Edition, 2015, 36(1):30-35. http://d.old.wanfangdata.com.cn/Periodical/jslgdxxb201501006
[14] 禹燕飞, 李明义, 赵文斌, 等.不同直径光滑圆管中黄原胶溶液流动减阻特性的实验研究[J].实验流体力学, 2014, 28(5):18-23. http://www.syltlx.com/CN/abstract/abstract10768.shtml Yu Y F, Li M Y, Zhao W B, et al. Experimental study on flow drag reduction characteristics of xanthan gum solution in smooth pipes with different diameters[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(5):18-23. http://www.syltlx.com/CN/abstract/abstract10768.shtml
[15] Chun M S, Kim C Y, Lee D E. Conformation and translational diffusion of a xanthan polyelectrolyte chain:Brownian dynamics simulation and single molecule tracking[J]. Physical Review E, 2009, 79(1):051919. http://cn.bing.com/academic/profile?id=2c36006e7ee202edecd9213514e30f4c&encoded=0&v=paper_preview&mkt=zh-cn
[16] Kim C A, Jo D S, Choi H J, et al. A high-precision rotating disk apparatus for drag reduction characterization[J]. Polymer Testing, 2000, 20(1):43-48. DOI: 10.1016/S0142-9418(99)00077-X
[17] 郭肖.刺槐豆胶及其复配胶流变学性质的研究[D].兰州: 西北师范大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10736-1014018814.htm Guo X. Study on rheological properties of Locust bean gum and its complex gums[D]. Lanzhou: Northwest Normal University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10736-1014018814.htm