飞翼布局低速支撑干扰及局部外形畸变影响数值模拟

Numerical simulation of support interference and distortion effect on flying wing in low speed wind tunnel

  • 摘要: 飞翼布局具有气动效率高、隐身性能好的优点,是未来军民用飞机的重要发展方向。该类布局模型风洞试验尾撑、腹撑及背撑等支撑形式的干扰量及由此带来的模型局部外形畸变影响较为复杂,目前还没有通用的支撑方案和试验修正方法。采用CFD数值模拟方法,分别对某小展弦比飞翼布局标模低速尾撑支杆干扰和尾部外形畸变影响进行了研究,结果表明:在常用角度范围内,所使用的数值模拟方法是可靠的,可用于风洞试验支撑方案的评估及支撑干扰的修正;对纵向特性,尾撑支杆干扰量和尾部外形畸变影响量相对全量较小;对横航向特性,尾撑支杆干扰量基本可忽略,尾部外形畸变影响量与全量相当。

     

    Abstract: The flying wing configuration shows high aerodynamic efficiency and nice stealth performance. It represents the future military and civil aircraft development direction. The support interference and local shape deformation effect in the wind tunnel test are extremely complex. There are no general support program and correction method for the flying wing configuration test in the wind tunnel. This paper calculated the sting interference and after-body deformation effect on a calibration model of the small aspect ratio flying wing by numerical simulation method. By comparing with the test results, the numerical simulation results are found to be reasonable and the method is proved to be reliable. This method can be used in support program evaluation and support interference correction for the wind tunnel test. The longitudinal components of force or moment of the sting interference and after-body deformation effect are small compared to the longitudinal components themselves. The lateral-directional components of force or moment of the sting interference can be ignored. The lateral-directional components of force or moment of the after-body deformation effect and the lateral-directional components themselves are of the same order of magnitude.

     

/

返回文章
返回