一种Ma0~4TBCC进气道气动设计及性能分析

Design and performance analysis of turbine based combined cycle inlet operation with Mach 0~4

  • 摘要: 从TBCC推进系统总体性能需求出发,给出了TBCC进气道捕获面积以及模态转换马赫数确定过程。在此基础上开展基于平动式模态转换装置的马赫数0~4内并联TBCC进气道气动方案设计,给出了进气道单自由度几何调节机构方案及其几何调节规律。通过对涡轮通道典型几何参数的规律化研究,结果表明:方转圆段几何长度、中心点ym值以及面积变化规律对进气道出口总压恢复系数及马赫数影响较小,对进气道出口流场的均匀度影响较大;就研究的进气道而言,选取方转圆段几何长度为3m,中心控制点ym=1.5,沿程截面面积变化规律为"先急后缓"的设计较为适宜;Ma=4.0时,设计的TBCC变几何进气道总压恢复系数为0.45,Ma=2.2时,总压恢复系数和畸变分别为0.79和0.15。

     

    Abstract: The turbine based combined cycle (TBCC) inlet was designed based on the thrust and mass-flow requirement of the TBCC propulsion system. The design points parameters of TBCC inlet, namely the captured area and the mode transition Mach number from turbine mode to ramjet mode were investigated through one-dimensional analysis of turbine engine and ramjet engine in this paper. Then the TBCC inlet scheme which can operate from Ma 0 to 4 was designed and its mode transition device was designed based on the translation scheme. The variable scheme of the TBCC inlet can be achieved through the single degree of freedom mechanism and the profile of the inlet operating at different Mach numbers was given. After the investigation of the length, control point values and the area diffusing rules of rectangular-to-circular shape diffuser of turbine flowpath, the numerical simulation results indicate that the diffuser length, control point values and the area diffusing rules have mild effects on the total pressure recovery and Mach number at the exit of the turbine flowpath, but control point values have significant effects on the distortion index. According to the results above, the diffuser length is chosen to be 3m, the value of the control point to be 1.5 and the area changing rule along the diffuser is chosen as a rapid turning at the entrance. The total pressure recovery of the TBCC inlet is 0.45 at Ma4.0 and 0.79 at Ma2.2, the distortion index is 0.15 at Ma2.2.

     

/

返回文章
返回