隔离段激波串精细结构与压力特性实验研究

孔小平, 陈植, 张扣立, 常雨, 朱杨柱, 龚红明

孔小平, 陈植, 张扣立, 常雨, 朱杨柱, 龚红明. 隔离段激波串精细结构与压力特性实验研究[J]. 实验流体力学, 2018, 32(4): 31-38. DOI: 10.11729/syltlx20170178
引用本文: 孔小平, 陈植, 张扣立, 常雨, 朱杨柱, 龚红明. 隔离段激波串精细结构与压力特性实验研究[J]. 实验流体力学, 2018, 32(4): 31-38. DOI: 10.11729/syltlx20170178
Kong Xiaoping, Chen Zhi, Zhang Kouli, Chang Yu, Zhu Yangzhu, Gong Hongming. Experimental study on the fine structures and pressure characteristic of the shock train in the isolator[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 31-38. DOI: 10.11729/syltlx20170178
Citation: Kong Xiaoping, Chen Zhi, Zhang Kouli, Chang Yu, Zhu Yangzhu, Gong Hongming. Experimental study on the fine structures and pressure characteristic of the shock train in the isolator[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 31-38. DOI: 10.11729/syltlx20170178

隔离段激波串精细结构与压力特性实验研究

基金项目: 

国家自然科学基金 11702308

中国博士后基金 2017M623354

详细信息
    作者简介:

    孔小平(1988-), 男, 甘肃庄浪人, 研究实习员。研究方向:实验流体力学与测试。通信地址:四川省绵阳市二环路南段6号(621000)。E-mail:kongxiaopiong08@126.com

    通讯作者:

    陈植, E-mail:gfkdchenzhi@163.com

  • 中图分类号: V211.71

Experimental study on the fine structures and pressure characteristic of the shock train in the isolator

  • 摘要: 在马赫数为2.5的等截面隔离段风洞中开展了无控制和安装T形涡流发生器两种情况的瞬态流场结构显示与压力测量的实验研究。运用常规纹影和基于纳米示踪的平面激光散射技术(NPLS)对两种不同状态的隔离段激波串三维流场精细结构进行了显示测量。结果表明:较传统纹影的测量结构而言,NPLS精细测量能够得到湍流边界层、激波串、分离区等细节结构。T形涡流发生器产生的展向涡与激波串相互作用,激波串前缘结构为分叉正激波,紧跟其后的第二道激波实际上结构与其类似。同时采用高频压力传感器对两种隔离段中激波串的壁面压力进行了测量,采用常规统计分析方法和差分平方累和方法对激波串压力分布、脉动及其上传特性进行了分析。分析表明,差分平方累和方法可以有效检测激波串的前缘位置。
    Abstract: Experimental studies on the fine structures of the transient flow and the pressure measurement of the shock train in a constant area isolator with T-control and without controlling method are performed. To study the three dimensional structure of the shock train, the oriented schlieren technique and the nano-tracer planar laser scattering(NPLS) technique are used. The flow visualization results show that these two techniques can obtain the flow structures. Compared with the oriented schlieren, the NPLS technique can catch the fine structures of the flow such as the boundary layer of the turbulence, fine structures of the shock train and the separation area. With the interaction of shock train and vortex induced by the T shaped generator, the shock train edge is bifurcated and closely followed by the second similar structure. High frequency pressure measurements are conducted to reveal the shock train movement and its frequency-domain feature. The shock train location and its movements are detected by conventional statistical methods and the approach of pressure derivative integral. It is revealed that the approach of pressure derivative integral can detect the shock train arriving effectively.
  • 图  1   直连式超声速隔离段实验风洞及NPLS测试系统

    Fig.  1   Supersonic wind tunnel equipped with flow visualization system for the isolator testing

    图  2   直连式超声速隔离段实验风洞剖视图

    Fig.  2   Schematic sketch of the supersonic wind tunnel configuration

    图  3   隔离段底板传感器安装孔配置剖视图

    Fig.  3   Schematic configuration of the pressure orifices and sensors on the bottom wall

    图  4   T形涡流发生器安装示意图

    Fig.  4   Sketch of T-shaped vortex generator installation

    图  5   无控制隔离段流场纹影图像序列(Ma=2.5)

    Fig.  5   Schlieren image sequence of the flow field structures of the isolator with no control (Ma=2.5)

    图  6   T控制隔离段流场纹影图像序列(Ma=2.5)

    Fig.  6   Schlieren image sequence of the flow field structures of the isolator with T-shaped vortex generator control (Ma=2.5)

    图  7   无控制隔离段纵向截面NPLS流场精细结构(Ma=2.5)

    Fig.  7   NPLS image of the flow field structures of the isolator with no control (Ma=2.5)

    图  8   T控制隔离段纵向截面NPLS流场精细结构(Ma=2.5)

    Fig.  8   NPLS image of the flow field structures of the isolator with T shaped vortex genertor control (Ma=2.5)

    图  9   无控制各传感器压力-时间曲线

    Fig.  9   Time history of pressure sensor data with no control

    图  10   T控制各传感器压力-时间曲线

    Fig.  10   Time history of pressure sensor data with T-shaped vortex genertor control

    图  11   T3传感器压力数据统计分析结果

    Fig.  11   Statistical analysis on pressure data of T3

    图  12   无控制隔离段各传感器压力数据功率谱

    Fig.  12   Power spectrum of the pressure data with no control

    图  13   T控制隔离段各传感器压力数据功率谱

    Fig.  13   Power spectrum of the pressure data with T-shaped vortex generator control

  • [1]

    Curran E T, Stull F D. The utilization of supersonic combustion ramjet systems at low Mach numbers[R]. Aero Propulsion Lab, RTD-TDR-63-4097, 1964.

    [2]

    Curran E T, Heiser W H, Pratt D T. Fluid phenomena in scramjet combustion systems[J]. Annual Review of Fluid Mechanics, 1996, 28(1):323-360. DOI: 10.1146/annurev.fl.28.010196.001543

    [3]

    Matsuo K, Miyazato Y, Kim H D. Shock train and pseudo-shock phenomena in internal gas flows[J]. Progress in Aerospace Sciences, 1999, 35(1):33-100. DOI: 10.1016/S0376-0421(98)00011-6

    [4]

    Carroll B F, Dutton J C. Turbulence phenomena in a multiple normal shock wave/turbulent boundary-layer interaction[J]. AIAA Journal, 1992, 30(1):43-48. DOI: 10.2514/3.10880

    [5]

    Laurence S J, Karl S, Schramm J M, et al. Transient fluid-combustion phenomena in a model scramjet[J]. Journal of Fluid Mechanics, 2013, 722(9):85-120. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f7b8f9e02efc49b03f83055f7c961375

    [6]

    Chang J, Wang L, Bao W, et al. Experimental investigation of hysteresis phenomenon for scramjet engine[J]. AIAA Journal, 2014, 52(2):447-451. DOI: 10.2514/1.J052505

    [7]

    Fischer C, Olivier H. Experimental investigation of wall and total temperature influence on a shock train[J]. AIAA Journal, 2014, 52(4):757-766. DOI: 10.2514/1.J052599

    [8]

    Fotia M L, Driscoll J F. Isolator-combustor interactions in a direct-connect ramjet-scramjet experiment[J]. Journal of Propulsion and Power, 2012, 28(1):83-95. DOI: 10.2514/1.B34367

    [9]

    Grzona A, Olivier H. Shock train generated turbulence inside a nozzle with a small opening angle[J]. Experiments in Fluids, 2011, 51(3):621-639. DOI: 10.1007/s00348-011-1083-5

    [10]

    Tu Q, Segal C. Isolator/combustion chamber interactions during supersonic combustion[J]. Journal of Propulsion and Power, 2010, 26(1):182-186. DOI: 10.2514/1.46156

    [11]

    Le D B, Goyne C P, Krauss R H, et al. Experimental study of a dual-mode scramjet isolator[J]. Journal of Propulsion and Power, 2008, 24(5):1050-1057. DOI: 10.2514/1.32591

    [12]

    Wagner J L, Yuceil K B, Valdivia A, et al. Experimental investigation of unstart in an inlet/isolator model in Mach 5 flow[J]. AIAA Journal, 2009, 47(6):1528-1542. DOI: 10.2514/1.40966

    [13]

    Wagner J L, Yuceil K B, Clemens N T. Velocimetry measurements of unstart of an inlet-isolator model in Mach 5 flow[J]. AIAA Journal, 2010, 48(9):1875-1888. DOI: 10.2514/1.J050037

    [14]

    Srikant S, Wagner J L, Valdivia A, et al. Unstart detection in a simplified-geometry hypersonic inlet-isolator flow[J]. Journal of Propulsion and Power, 2010, 26(5):1059-1071. DOI: 10.2514/1.46937

    [15]

    Donbar J M, Linn G J, Srikant S, et al. High-frequency pressure measurements for unstart detection in scramjet isolators[C]//Proc of 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2010.

    [16]

    Donbar J M, Brown M S, Linn G J, et al. Simultaneous high-frequency pressure and TDLAS measurements in a small-scale axisymmetric isolator with bleed[R]. AIAA-2012-0331, 2012.

    [17]

    Pettinari S, Corradini M L, Serrani A. Detection of scramjet unstart in a hypersonic vehicle model[C]//Proc of American Control Conference Fairmont Queen Elizabeth. 2012.

    [18]

    Chang J, Zheng R, Wang L, et al. Backpressure unstart detection for a scramjet inlet based on information fusion[J]. Acta Astronautica, 2014, 95(1):1-14. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232260505/

    [19]

    Chen Z, Yi S H, Zhu Y Z, et al. Investigation on flows in a supersonic isolator with an adjustable cowl convergence angle[J]. Experimental Thermal and Fluid Science, 2014, 52(1):182-190. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3563aa5f627818bf84c2fe94fa1a78dd

    [20]

    Le D B, Goyne C P, Krauss R H. Shock train leading-edge detection in a dual-mode scramjet[J]. Journal of Propulsion and Power, 2008, 24(5):1035-1041. DOI: 10.2514/1.32592

    [21]

    Hutzel J R, Decker D D, Cobbz R G, et al. Scramjet isolator shock train location techniques[C]//Proc of 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011.

    [22]

    Hutzel J R, Decker D D, Donbar J M. Scramjet isolator shock-train leading-edge location modeling[R]. AIAA-2011-2223, 2011.

    [23]

    Weiss A, Olivier H. Behaviour of a shock train under the influence of boundary-layer suction by a normal slot[J]. Experiments in Fluids, 2012, 52(2):273-287. DOI: 10.1007/s00348-011-1211-2

    [24]

    Hu J, Chang J, Qin B, et al. Scramjet isolator shock-train leading-edge position modeling based on equilibrium manifold[J]. Journal of Aerospace Engineering, 2013, 28(2):04014064. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5371b57d7d7ca0ee5835efe7e04404fa

    [25]

    Hutchins K E, Akella M R, Clemens N T, et al. Experimental identification of transient dynamics for supersonic inlet unstart[J]. Journal of Propulsion and Power, 2014, 30(6):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b99e6183e76c87ebdfb6cb64a3fa397b

    [26]

    Valdivia A, Yuceil K B, WagneJ L, et al. Control of supersonic inlet-isolator unstart using active and passive vortex generators[J]. AIAA Journal, 2014, 52(6):1207-1218. DOI: 10.2514/1.J052214

    [27]

    Geerts J S, Yu K H. Shock train/Boundary-Layer interaction in rectangular isolators[J]. AIAA Journal, 2016, 54(11):3450-3464 DOI: 10.2514/1.J054917

    [28]

    Geerts J S, Yu K H. Systematic application of background-oriented schlieren for isolator shock train visualization[J]. AIAA Journal, 2017, 55(4):1105-1117. DOI: 10.2514/1.J054991

    [29]

    Fan X Q, Xiong B, Wang Y, et al. Self-excited and forced oscillation of a shock train in a rectangular isolator at Mach 3[C]//Proc of 21st AIAA International Space Plane and Hypersonics Technologies Conference. 2017.

    [30]

    Xiong B, Wang Z G, Fan X Q, et al. Response of shock train to high-frequency fluctuating backpressure in an isolator[J]. Journal of Propulsion and Power, 2017, 33(1):1-9. DOI: 10.2514/1.B36521

  • 期刊类型引用(3)

    1. 白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 . 百度学术
    2. 温青,龙航,华旭刚,池俊豪,孙洪鑫. 宽高比5∶1矩形断面涡激振动锁定区间内涡激力展向相关性分析. 振动工程学报. 2023(02): 319-325 . 百度学术
    3. 白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 . 百度学术

    其他类型引用(2)

图(13)
计量
  • 文章访问数:  183
  • HTML全文浏览量:  101
  • PDF下载量:  14
  • 被引次数: 5
出版历程
  • 收稿日期:  2017-12-21
  • 修回日期:  2018-04-11
  • 刊出日期:  2018-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭