Cloud calibration method of 3m×2m icing wind tunnel
-
摘要: 为综合检验结冰风洞的性能,并为飞机适航取证中结冰合格审定工作提供测试依据,依照SAE ARP5905的相关要求,根据冰积聚原理、相位多普勒干涉原理和热线原理,采用格栅、PDI-FPDR、冰刀、LWC-200在3m×2m结冰风洞主试验段完成了云雾参数校测工作,总结了测试方法与流程以提高校测效率。代表性云雾参数校测结果表明,云雾场均匀区能够覆盖试验段横截面积的60%以上,云雾容积平均直径(MVD)稳定性优于±10%,液态水含量(LWC)稳定性优于±20%,云雾参数满足ARP 5905相关指标要求,能够为3m×2m结冰风洞的标检提供数据支撑。Abstract: The cloud calibration has been carried out under SAE ARP5905 standard for 3m×2m icing wind tunnel, results of which can be used for certificating icing wind tunnel performance and supplying data proof for obtaining icing flight certification. Based on the ice accretion mechanism, the phase doppler interference principle, and the hot-wire principle, the calibration work was completed in the main test section by using the icing grid, PDI-FPDR, the icing blade, and LWC-200. Methods and procedures are summarized to increase the efficiency of calibration. Typical cloud calibration results indicate that the icing cloud uniformity is good, 60% of the main test section could remain target LWC within ±20%. The MVD maximum deviation is smaller than ±10%. The LWC stability is greater than ±20%. All the cloud parameters could meet the requirements of ARP5905, which could be used for supplying data proof of 3m×2m icing wind tunnel certification.
-
Keywords:
- icing wind tunnel /
- icing test /
- airworthiness /
- cloud parameter /
- calibration
-
-
表 1 结冰风洞基本性能参数
Table 1 Main performance parameters of icing wind tunnel
Content Main test
sectionSecond test
sectionHigh speed
test sectionSize 3m×2m×6.5m 4.8m×3.2m×9m 2m×1.5m×4.5m Speed 21~210m/s 8~78m/s 26~256m/s Temperature Normal~-40℃ Humidity 70% ~100% Altitude 0~20000m Cloud MVD: 10~300μm
LWC:0.2~3g/m3
Uniformity: 60% of section -
[1] SAE Aerospace. SAE ARP5905 Calibration and acceptance of icing wind tunnels[S]. SAE, 2003. http://www.sae.org/standards/content/arp5905/
[2] Federal Aviation Administration. FAR Part25 Airworthiness standards: Transport category airplanes[S]. Federal Aviation Agency, 2008.
[3] 中国民用航空局. CCAR-25-R4中国民用航空规章第25部: 运输类飞机适航标准[S]. 北京: 中国民用航空局, 2011. [4] SAE Aerospace. SAE AIR4906 Droplet sizing instrumentation used in icing facilities[S]. SAE, 1995. https://www.sae.org/standards/content/air4906/
[5] SAE. SAE AIR5320 Summary of icing simulation test facilities[S]. SAE, 1999. https://www.sae.org/standards/content/air5320/
[6] SAE Aerospace. SAE AIR5624 Aircraft inflight icing terminology[S]. SAE, 2008. http://articles.sae.org/2917/
[7] Sten L E, Ide R F. NASA glenn icing research tunnel: 2014 and 2015 cloud calibration procedures and results[R]. NASA/TM-2015-218758, 2015. https://www.sciencedirect.com/science/article/pii/S0376042118300058
[8] Van Zante J F, Ide R F. NASA glenn icing research tunnel: 2014 cloud calibration procedure and results[R]. NASA/TM-2014-218392, 2014. DOI: 10.2514/6.2012-2933
[9] Bellucci M, Esposito B M. Calibration of the CIRA IWT in the low speed configuration[R]. AIAA-2007-1092, 2007. http://edu.wanfangdata.com.cn/Periodical/Detail/kjdb201325007
[10] Ragni A, Esposito B. Calibration of the CIRA IWT in the high speed configuration[R]. AIAA-2005-471, 2005. http://www.academia.edu/28736885/Calibration_of_the_CIRA_IWT_in_the_High_Speed_Configuration
[11] 林贵平, 卜雪琴, 申晓斌, 等.飞机结冰与防冰技术[M].北京:北京航空航天大学出版社, 2016. [12] 朱春玲, 朱程香.飞机结冰及其防护[M].北京:科学出版社, 2016. [13] 程尧, 张平涛, 郭向东, 等.机载式相位多普勒干涉仪在结冰风洞的应用[J].兵工自动化, 2017, 36(9):55-57. http://www.cqvip.com/QK/90272A/201502/664576270.html Cheng Y, Zhang P T, Guo X D, et al. Application of PDI-FPDR in icing wind tunnel[J]. Ordnance Industry Automation, 2017, 36(9):55-57. http://www.cqvip.com/QK/90272A/201502/664576270.html
[14] 赖庆仁, 郭龙, 李明, 等.结冰风洞液态水含量测量装置设计与实现[J].空气动力学学报. 2016, 24(6):750-755. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kjdb200921018 Lai Q R, Guo L, Li M, et al. Design and implementation of the device for liquid water content measurement in icing wind tunnel[J]. Acta Aerodynamica Sinica, 2016, 24(6):750-755. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kjdb200921018