预混湍流火焰面褶皱结构网络拓扑研究

王金华, 聂要辉, 常敏, 张猛, 黄佐华

王金华, 聂要辉, 常敏, 张猛, 黄佐华. 预混湍流火焰面褶皱结构网络拓扑研究[J]. 实验流体力学, 2018, 32(1): 19-25, 63. DOI: 10.11729/syltlx20170147
引用本文: 王金华, 聂要辉, 常敏, 张猛, 黄佐华. 预混湍流火焰面褶皱结构网络拓扑研究[J]. 实验流体力学, 2018, 32(1): 19-25, 63. DOI: 10.11729/syltlx20170147
Wang Jinhua, Nie Yaohui, Chang Min, Zhang Meng, Huang Zuohua. Network topology analysis on wrinkled structure of turbulent premixed Bunsen flame[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 19-25, 63. DOI: 10.11729/syltlx20170147
Citation: Wang Jinhua, Nie Yaohui, Chang Min, Zhang Meng, Huang Zuohua. Network topology analysis on wrinkled structure of turbulent premixed Bunsen flame[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 19-25, 63. DOI: 10.11729/syltlx20170147

预混湍流火焰面褶皱结构网络拓扑研究

基金项目: 

国家自然科学基金 51776164

国家自然科学基金 91441203

天津大学内燃机燃烧学国家重点实验室开放课题 K2017-03

激光与物质相互作用国家重点实验室开放课题 SKLLIM1508

详细信息
    作者简介:

    王金华(1981-), 男, 湖北荆门人, 教授。研究方向:湍流燃烧基础研究。通信地址:陕西省西安市咸宁西路28号(710049)。E-mail:jinhuawang@mail.xjtu.edu.cn

    通讯作者:

    王金华, E-mail:jinhuawang@mail.xjtu.edu.cn

  • 中图分类号: TK411

Network topology analysis on wrinkled structure of turbulent premixed Bunsen flame

  • 摘要: 湍流火焰结构是表征湍流与火焰相互作用的组分、速度、温度等标量场信息,理解湍流与火焰相互作用规律,验证和发展湍流燃烧模型的实验基础。针对传统曲率PDF分布反映湍流火焰面褶皱结构失准问题,利用网络拓扑结构方法可以标记系统关键节点和特征结构,构建湍流火焰面的拓扑结构。本文标记了湍流火焰面上的关键褶皱结构,分析了湍流与火焰的作用规律,结果表明:低湍流强度下,湍流火焰面的关键褶皱结构由火焰自身不稳定性引起;当湍流强度增大,湍流火焰面的关键褶皱结构由湍流尺度决定。在本生灯湍流火焰中,火焰自身不稳定性引起的火焰褶皱与火焰发展距离有关。在本生灯火焰底部,火焰自身不稳定性不引起火焰面褶皱,随着火焰向下游发展,其对火焰面影响逐渐增大,火焰褶皱程度增加。
    Abstract: Turbulent flame structure represents the species, velocity and temperature field in the turbulent combustion, which reflects the interaction between the turbulence and the combustion. It is also important for combustion model validation. The conventional PDF of curvature method can not accurately reflect the folded regions in the turbulent flame, while the network topology analysis can demonstrate these regions as it can mark the key nodes or structure in a system. In this paper, the network structure of the turbulent premixed Bunsen flame is constructed to trace the folded regions in turbulent flames. Results show that the folded regions can be traced by network structure. These regions are mainly caused by DL instability in weak turbulence, while they are mainly affected by turbulence vortex wrinkling as turbulence intensity increases. The influence of DL instability on turbulent premixed Bunsen flames is constrained by flame development. At the bottom of Bunsen flame, the DL instability does not wrinkle the flame. As the flame propagates to the downstream, the flame becomes more wrinkled due to DL instability.
  • 图  1   湍流燃烧实验装置

    Fig.  1   Schematic of turbulent Bunsen burner and perforated plate

    图  2   本生灯湍流场测量示意图

    Fig.  2   Schematic of measurement of flow field

    图  3   不稳定性波长计算及湍流分布图

    Fig.  3   Calculation of DL instability wavelength and experimental conditions in the combustion diagram

    图  4   火焰前锋面结构提取过程

    Fig.  4   Procedure of image process

    图  5   湍流火焰拓扑构建示意图

    Fig.  5   The schematic network structure

    图  6   一般曲线及其网络结构可视化

    Fig.  6   Nerwork structure of straight and sinusoidal line

    图  7   不同工况下湍流火焰OH-PLIF图片

    Fig.  7   OH-PLIF images under different conditions

    图  8   不同工况下湍流火焰曲率PDF分布

    Fig.  8   PDF of curvature under different conditions

    图  9   湍流火焰拓扑结构及可视化

    Fig.  9   Network structure of turbulent Bunsen flames

    图  10   不同工况湍流火焰网络结构节点度概率分布

    Fig.  10   Degree distribution under different conditions

    图  11   不同工况下火焰刷厚度及定义

    Fig.  11   Schematic of definition of flame brush thickness and two flame brush under different conditions

    图  12   水平火焰刷厚度随出口高度的变化

    Fig.  12   The normalised horizotal flame brush thickness with respect to the normalised axial distance from Bunsen burner exit

    表  1   甲烷实验工况

    Table  1   Experiment condition of methan flames

    孔板 φ Uave u SL0 l0 l h Li
    S1_D 0.7 3 0.74 19.0 5.57 0.34 0.08 2
    S1_D 1.0 3 0.74 37.1 5.57 0.34 0.08 0.64
    P3_D 0.7 3 0.21 19.0 4.18 0.55 0.19 2
    P3_D 1.0 3 0.21 37.1 4.18 0.55 0.19 0.64
    P2_D 0.7 3 0.17 19.0 4.59 0.66 0.24 2
    P2_D 1.0 3 0.17 37.1 4.59 0.66 0.24 0.64
    下载: 导出CSV
  • [1]

    Peters N. Turbulent combustion[M]. Cambridge University Press, 2000.

    [2]

    Tamadonfar Parsa, Gülder ömer L. Flame brush characteristics and burning velocities of premixed turbulent methane/air Bunsen flames[J]. Combustion and Flame, 2014, 161(12):3154-3165. DOI: 10.1016/j.combustflame.2014.06.014

    [3]

    Fragner R, Halter F, Mazellier N, et al. Investigation of pressure effects on the small scale wrinkling of turbulent premixed Bunsen flames[J]. Proceedings of the Combustion Institute, 2015, 35(2):1527-1535. DOI: 10.1016/j.proci.2014.06.036

    [4]

    Poludnenko A Y, Oran E S. The interaction of high-speed turbulence with flames:Global properties and internal flame structure[J]. Combustion and Flame, 2010, 157(5):995-1011. DOI: 10.1016/j.combustflame.2009.11.018

    [5]

    Lipatnikov A N, Chomiak J. Effects of premixed flames on turbulence and turbulent scalar transport[J]. Progress in Energy and Combustion Science, 2010, 36(1):1-102. DOI: 10.1016/j.pecs.2009.07.001

    [6]

    Nishiki S. Modeling of flame-generated turbulence based on direct numerical simulation databases[J]. Proceedings of the Combustion Institute, 2002, 29:2017-2022. DOI: 10.1016/S1540-7489(02)80246-2

    [7]

    Lipatnikov A N, Chomiak J. Turbulent flame speed and thickness:phennomenology, evaluation, and application in multi-dimensional simulations[J]. Progress in Energy & Combustion Science, 2002, 28:1-74. https://www.sciencedirect.com/science/article/pii/S0360128501000077

    [8]

    Fureby C. A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion[J]. Proceedings of the Combustion Institute, 2005, 30(1):593-601. DOI: 10.1016/j.proci.2004.08.068

    [9]

    Cintosun Esen, Smallwood Gregory J, Gülder ömer L. Flame surface fractal characteristics in premixed turbulent combustion at high turbulence intensities[J]. AIAA Journal, 2007, 45(11):2785-2789. DOI: 10.2514/1.29533

    [10]

    Bradley D. Application of a reynolds stress, stretched flamelet, mathematical model to computations of turbulent burning velocities andcomparison with experiments[J]. Combustion & Flame, 1994, 96:221-248. https://www.sciencedirect.com/science/article/pii/0010218094900116

    [11]

    Yeung P K. Lagrangian statistics from direct numerical simulations of isotropic turbulence[J]. Journal of Fluid Mechanics, 1989, 207:531-586. DOI: 10.1017/S0022112089002697

    [12]

    Pope S. Lagrangian PDF methods for turbulent flows[J]. Annu Rev Fluid Mech, 1994, 26:23-63. DOI: 10.1146/annurev.fl.26.010194.000323

    [13]

    Chaudhuri S. Life of flame particles embedded in premixed flames interacting with near isotropic turbulence[J]. Proceedings of the Combustion Institute, 2015, 35(2):1305-1312. DOI: 10.1016/j.proci.2014.08.007

    [14]

    Chen H J. The mechanism of two-dimensional pocket formation in lean premixed methane-air flames with implications to turbulent combustion[J]. Combustion & Flame, 1999:15-48. http://cn.bing.com/academic/profile?id=91691432f860044c4cc75574cbba6e55&encoded=0&v=paper_preview&mkt=zh-cn

    [15]

    Liu C, Zhou W X, Yuan W K. Statistical properties of visibility graph of energy dissipation rates in three-dimensional fully developed turbulence[J]. Physica A:Statistical Mechanics and its Applications, 2010, 389(13):2675-2681. DOI: 10.1016/j.physa.2010.02.043

    [16]

    Murugesan Meenatchidevi, Sujith R I. Combustion noise is scale-free:transition from scale-free to order at the onset of thermoacoustic instability[J]. Journal of Fluid Mechanics, 2015, 772:225-245. DOI: 10.1017/jfm.2015.215

    [17] 张猛, 王金华, 谢永亮, 等.利用OH_PLIF测量CH4/H2/空气混合气湍流燃烧速率[J].燃烧科学与技术, 2013, 19(6):512-516. http://gxhx.cbpt.cnki.net/WKB2/WebPublication/wkTextContent.aspx?contentID=&colType=4&yt=2017&st=05

    Zhang M, Wang J H, Xie Y L, et al. Measurement of turbulent burning velocity of CH4/H2/Air mixtures using OH-PLIF[J]. Journal of Combustion Science and Technology, 2013, 19(6):512-516. http://gxhx.cbpt.cnki.net/WKB2/WebPublication/wkTextContent.aspx?contentID=&colType=4&yt=2017&st=05

    [18]

    Zhang M, Wang J H, Wu J, et al. Flame front structure of turbulent premixed flames of syngas oxyfuel mixtures[J]. International Journal of Hydrogen Energy, 2014, 39(10):5176-5185. DOI: 10.1016/j.ijhydene.2014.01.038

    [19]

    Kobayashi H, Tamura T, Maruto K, et al. Burning velocity of turbulent premixed flames in a high pressure environment[J]. Proceedings of the Combustion Institute, 1996, 26(1):389-396. DOI: 10.1016/S0082-0784(96)80240-2

    [20] 张猛, 王金华, 俞森彬, 等.自适应阈值二值法提取湍流火焰前锋面结构[J].燃烧科学与技术, 2016, 22(3):212-217. http://journals.tju.edu.cn/rs/oa/scriptlsit.aspx?kind=Field&colid=1

    Zhang M, Wang J H, Yu S B, et al. Flame front tracking of turbulent premixed flames using adaptive threshold binarization[J]. Journal of Combustion Science and Technology, 2016, 22(3):212-217. http://journals.tju.edu.cn/rs/oa/scriptlsit.aspx?kind=Field&colid=1

    [21]

    Luque B, Lacasa L, Ballesteros F, et al. Horizontal visibility graphs:Exact results for random time series[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2009, 80(2):046103. http://cn.bing.com/academic/profile?id=71d2259316f2903d95668ed2a6c721a5&encoded=0&v=paper_preview&mkt=zh-cn

    [22]

    Bresenham J E. Algorithm for computer control of a digital plotter[J]. IBM Systems Journal, 1965, 4(1):25-30. DOI: 10.1147/sj.41.0025

    [23]

    Barabasi A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509. DOI: 10.1126/science.286.5439.509

    [24]

    Hamlington P E, Poludnenko A Y, Oran E S. Interactions between turbulence and flames in premixed reacting flows[J]. Physics of Fluids, 2011, 23(12):125111. DOI: 10.1063/1.3671736

    [25]

    Chakraborty N, Klein M, Swaminathan N. Effects of lewis number on the reactive scalar gradient alignment with local strain rate in turbulent premixed flames[J]. Proceedings of the Combustion Institute, 2009, 32(1):1409-1417. DOI: 10.1016/j.proci.2008.06.021

    [26]

    Fruchterman T M J, Reingold E M. Graph drawing by force-directed placement[J]. Software Practice & Experience, 2010, 21(11):1129-1164. http://cn.bing.com/academic/profile?id=47fec71599586b4db1914c25cba86c0e&encoded=0&v=paper_preview&mkt=zh-cn

    [27]

    Scholz M. Node similarity as a basic principle behind connectivity in complex networks[J]. Computer Science, 2015:1-7. http://cn.bing.com/academic/profile?id=ddb6e0727cf2e5cf67a5ef7efd3ee4ec&encoded=0&v=paper_preview&mkt=zh-cn

    [28]

    Boyer L, Quinard J. On the dynamics of anchored flames[J]. Combustion & Flame, 1990, 82(1):51-65. http://cn.bing.com/academic/profile?id=a9bbda85daa4eb50d8e2717d186a4bfc&encoded=0&v=paper_preview&mkt=zh-cn

    [29]

    Lieuwen T. Local consumption speed of turbulent premixed flames-An analysis of "memory effect"[J]. Combustion & Flame, 2010, 157:955-965. http://www.sciencedirect.com/science/article/pii/S0010218009002855

    [30]

    Clavin P, Williams F A. Theory of premixed-flame propagation in large-scale turbulence[J]. Journal of Fluid Mechanics, 2006, 90(3):589-604. http://cn.bing.com/academic/profile?id=72b3b47bc5a56ca0ac6ef4860f677a1b&encoded=0&v=paper_preview&mkt=zh-cn

    [31]

    Aldredge R C, Williams F A. Influence of wrinkled premixed-flame dynamics on large-scale, low-intensity turbulent flow[J]. Journal of Fluid Mechanics, 2006, 228(228):487-511. http://cn.bing.com/academic/profile?id=7af3354618aef0574a574540cba8b3c8&encoded=0&v=paper_preview&mkt=zh-cn

    [32]

    Tamadonfar Parsa, Gülder ömer L. Effects of mixture composition and turbulence intensity on flame front structure and burning velocities of premixed turbulent hydrocarbon/air Bunsen flames[J]. Combustion and Flame, 2015, 162(12):4417-4441. DOI: 10.1016/j.combustflame.2015.08.009

图(12)  /  表(1)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  66
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-01
  • 修回日期:  2017-12-24
  • 刊出日期:  2018-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭