200m自由飞弹道靶模型高精度视觉位姿测量技术

黄洁, 柯发伟, 谢爱民, 李鑫, 宋强, 王宗浩, 文雪忠, 柳森

黄洁, 柯发伟, 谢爱民, 李鑫, 宋强, 王宗浩, 文雪忠, 柳森. 200m自由飞弹道靶模型高精度视觉位姿测量技术[J]. 实验流体力学, 2018, 32(5): 67-75. DOI: 10.11729/syltlx20170139
引用本文: 黄洁, 柯发伟, 谢爱民, 李鑫, 宋强, 王宗浩, 文雪忠, 柳森. 200m自由飞弹道靶模型高精度视觉位姿测量技术[J]. 实验流体力学, 2018, 32(5): 67-75. DOI: 10.11729/syltlx20170139
Huang Jie, Ke Fawei, Xie Aimin, Li Xin, Song Qiang, Wang Zonghao, Wen Xuezhong, Liu Sen. Vision measurement technology of model poses with high accuracy on the 200m free flight ballistic range[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 67-75. DOI: 10.11729/syltlx20170139
Citation: Huang Jie, Ke Fawei, Xie Aimin, Li Xin, Song Qiang, Wang Zonghao, Wen Xuezhong, Liu Sen. Vision measurement technology of model poses with high accuracy on the 200m free flight ballistic range[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 67-75. DOI: 10.11729/syltlx20170139

200m自由飞弹道靶模型高精度视觉位姿测量技术

详细信息
    作者简介:

    黄洁(1968-), 女, 四川乐山人, 研究员。研究方向:高超声速空气动力学, 超高声速碰撞动力学。通信地址:四川省绵阳市二环路南段6号中国空气动力研究与发展中心(621000)。E-mail:liuchuanrui1968@126.com

    通讯作者:

    黄洁, E-mail: liuchuanrui1968@126.com

  • 中图分类号: V556.2

Vision measurement technology of model poses with high accuracy on the 200m free flight ballistic range

  • 摘要: 为精确测量弹道靶超高声速自由飞模型位姿变化参数以用于气动力参数辨识,中国空气动力研究与发展中心结合双目视觉定位技术和前光照相技术,在弹道靶上发展了超高声速自由飞模型的高精度视觉位姿测量技术。双目测量站沿模型飞行方向布置,试验前完成测量站单站标定、多站全局坐标关联等。模型进入测量站视场中心时,脉宽小于10ns的激光经扩束后照射表面带编码标记点的模型,同时双目测量站相机获得前光图像。试验后通过模型表面标记点识别解算,获得模型飞行过程的位姿参数。在解决靶室杂光滤除、前光光源出口光斑匀化、双目测量站全局关联、模型表面处理及标记点制作等技术的基础上,建立了200m自由飞弹道靶模型高精度视觉位姿测量系统。在200m自由飞弹道靶上开展了长165mm的20°锥模型的飞行试验,试验环境压力15kPa、速度2.7km/s,根据视觉位姿测量系统获得的锥模型在各测量站飞行位姿参数和激光器的出光时序,通过辨识获得锥模型的阻力系数和动导数等气动力参数,所得结果与AEDC G靶上的结果趋势基本一致。
    Abstract: In order to obtain the changes of model poses flying at hypervelocity accurately on the free flight ballistic range which was used for identifying the aerodynamic parameters, China Aerodynamics Research and Development Center (CARDC) developed the vision measurement technology of model poses, which combined the mature technologies of the binocular vision location and the front light photo. The binocular measurement stations were installed along the flying direction of model, which would be calibrated and correlated to the same base coordinate before model test. When the model with coded feature points on its surface entered the measurement field, it would be illuminated by the extended laser light beam with the pulse width of smaller than 10ns, meanwhile, the two front light images were obtained by the cameras of the binocular measurement station, then the model poses were obtained by identifying and calculating the coded feature points on its surface. Based on solving the key technologies of filtering the parasitic light in the chamber, homogenizing the exit facular of the front light source, correlating binocular measurement stations to the same base coordinate, dealing the model surface color and fabricating feature points, the vision measurement system of poses with high accuracy on the 200m free flight ballistic range was accomplished. The test on the 20° cone with the length of 165 mm was carried out on the ballistic range, which flew in the chamber with the pressure of 15kPa at the velocity of about 2.7km/s. According to the cone poses at different binocular measurement stations and the sequence time of lasers flashing obtained by the vision measurement system, the drag index and the dynamic derivative of the cone were obtained by identifying, the trends of which were basically in consistency with those of the AEDC G range.
  • 致谢: 在测量技术的调试及试验过程中, 罗锦阳、简和祥、陈鲲、罗庆、龙耀、姜林、周毅、覃金贵等同志提出了宝贵建议并给予了很多帮助, 全体试验人员付出了辛勤劳动, 在此表示衷心感谢。
  • 图  1   视觉姿态测量系统工作流程图

    Fig.  1   The workflow of the vision measurement system

    图  2   双目测量站布置示意图[14]

    Fig.  2   The layout sketch of binocular measurement station[14]

    图  3   双目立体视觉中空间点的三维重建

    Fig.  3   3-D rebuild of space point in binocular stereovision

    图  4   双目测量站标定板

    Fig.  4   Calibration plate of binocular measurement station

    图  5   过曝前光图像

    Fig.  5   The overexposure front light image

    图  6   模型自发光前光图像

    Fig.  6   Front light image with model spontaneous light

    图  7   激光光斑品质改进前后获得的图像比较

    Fig.  7   Comparison of front light images

    图  8   双目测量站立体关联装置

    Fig.  8   Tridimensional correlation device of binocular measurement station

    图  9   模型表面处理成不同的颜色获得的前光图像对比

    Fig.  9   Comparison of front light images for the different surface colors of model

    图  10   前光图像处理及模型位姿解算流程

    Fig.  10   The work flow of pre-process on the images and calculation on the model poses

    图  11   激光器出光时间关联系统布局图

    Fig.  11   The sketch of collecting the sequence time of lasers flashing

    图  12   单站双目前光图像

    Fig.  12   The binocular front light images of one station in the test

    图  13   锥模型飞行位姿变化

    Fig.  13   The poses changes of the cone model

    图  14   气动力参数辨识原理

    Fig.  14   The principle of identifying aerodynamic parameters

    图  15   气动力参数辨识结果与AEDC G靶的对比

    Fig.  15   Comparison of the identified results with those of AEDC G Range

  • [1]

    Wilder M C, Bogdanoff D W, Cornelison C J. Hypersonic testing capabilities at the NASA Ames ballistic ranges[R]. AIAA 2015-1339, 2015.

    [2] 刘世平, 易文俊, 顾金良, 等.弹道靶数据判读与处理方法研究[J].兵工学报, 2000, 21(3):201-204. DOI: 10.3321/j.issn:1000-1093.2000.03.003

    Liu S P, Yi W J, Gu J L, et al. A new method for image analysis and data extraction of projectiles in flight[J]. Acta Armamentarii, 2000, 21(3):201-204. DOI: 10.3321/j.issn:1000-1093.2000.03.003

    [3] 顾金良, 陈平, 夏言, 等.数字式靶道阴影照相系统[J].弹道学报, 2009, 21(4):38-41. http://d.old.wanfangdata.com.cn/Periodical/ddxb200904010

    Gu J L, Chen P, Xia Y, et al. Digital ballistic range shadowgraph system[J]. Journal of Ballistics, 2009, 21(4):38-41. http://d.old.wanfangdata.com.cn/Periodical/ddxb200904010

    [4] 王唯, 唐志华, 罗红娥, 等.照相站空间基准标定方法及测量误差分析[J].兵工学报, 2014, 35(9):1414-1418. DOI: 10.3969/j.issn.1000-1093.2014.09.013

    Wang W, Tang Z H, Luo H E, et al. Calibration of shadow-graphy system and analysis of measuring error[J]. Acta Armamentarii, 2014, 35(9):1414-1418. DOI: 10.3969/j.issn.1000-1093.2014.09.013

    [5] 焦德志, 黄洁, 平新红, 等. 200m自由飞弹道靶升级改造[J].实验流体力学, 2014, 28(2):95-98. http://www.syltlx.com/CN/abstract/abstract10726.shtml

    Jiao D Z, Huang J, Ping X H, et al. Upgrading of 200 meter free-flight ballistic range at CARDC[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2):95-98. http://www.syltlx.com/CN/abstract/abstract10726.shtml

    [6]

    Du H, Li M G. The study for particle image velocimetry system based on binocular vision[J]. Measurement, 2009, 42(4):619-627. DOI: 10.1016/j.measurement.2008.10.011

    [7]

    Zhou W J, Yu L, Qiu W W, et al. Utilizing binocular vision to facilitate completely blind 3D image quality measurement[J]. Signal processing, 2016, 129:130-136. DOI: 10.1016/j.sigpro.2016.06.005

    [8]

    Wang J, Wang X J, Liu F, et al. Modeling of binocular stereo vision for remote coordinate measurement and fast calibration[J]. Optics and Lasers Engineering, 2014, 54(1):269-274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=79b9b7abc71eb112b35a41d3c39e9235

    [9] 宋晋, 马军, 蒋敏, 等.双目视觉系统在风洞伞摆角测量中的应用与研究[J].计算机测量与控制, 2012, 20(8):2042-2044. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjzdclykz201208009

    Song J, Ma J, Jiang M, et al. Research and application of parachute swing angle in wind tunnel test based on stereo vision measurement system[J]. Computer Measurement & Control, 2012, 20(8):2042-2044. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjzdclykz201208009

    [10] 钟凯, 李中伟, 史玉升, 等.组合式大尺寸三维测量系统中的结构参数标定算法[J].天津大学学报, 2011, 44(5):425-429. http://d.old.wanfangdata.com.cn/Periodical/tianjdxxb201105009

    Zhong K, Li Z W, Shi Y S, et al. Calibration algorithm of structure parameters in combined large-scale 3D metrology system[J]. Journal of Tianjin University, 2011, 44(5):425-429. http://d.old.wanfangdata.com.cn/Periodical/tianjdxxb201105009

    [11]

    Liu X J, Zhao H S, Zhan G M, et al. Rapid and automatic 3D body measurement system based on a GPU-Steger line detector[J]. Applied Optics, 2016, 55(21):5539-5547. DOI: 10.1364/AO.55.005539

    [12]

    Zhao P, Ni G Q. Simultaneous perimeter measurement for 3D object with a binocular stereo vision measurement system[J]. Optics and Lasers Engineering, 2010, 48(4):505-511. DOI: 10.1016/j.optlaseng.2009.08.007

    [13] 马颂德, 张正友.计算机视觉[M].北京:科学出版社, 2003.

    Ma S D, Zhang Z Y. Computer vision[M]. Beijing:Science Press, 2003.

    [14]

    Ke F W, Huang J, Xie A M, et al. Photo and location techno-logy of binocular front light used to obtain the attitude of flying model with hypervelocity in the free flight ballistic range[C]//Proc of the 13th Asian Symposium on Visualization. 2015.

    [15]

    Xu G, Li X T, Su J, et al. Comprehensive evaluation for mea-surement errors of a binocular vision system with long virtual baseline generated from double reflection mirrors[J]. Optik, 2015, 126(23):4621-4624. DOI: 10.1016/j.ijleo.2015.08.063

    [16]

    Daniilidis K. Hand-eye calibration using dual quaternions[J]. The International Journal of Robotics Research, 1999, 18(3):286-298. DOI: 10.1177/02783649922066213

    [17] 文雪忠, 郑蕾, 李毅, 等.三维光学扫描技术在超高声速碰撞毁伤测量中的初步应用[C]//第七届全国空间碎片学术交流会论文集. 2013.

    Wen X Z, Zheng L, Li Y, et al. The preliminary application of 3D optical scanning technique in hypervelocity impact damage measurement[C]//Proc of the 7th National Conference on Space Debris. 2013.

    [18]

    Welse C J, Winchenbach G L, Madagan A N. Free-flight investigation of the aerodynamic characteristics of a cone at high Mach number[J]. AIAA Journal, 1970, 8(2):294-300. DOI: 10.2514/3.5659

图(15)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  201
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-24
  • 修回日期:  2018-03-19
  • 刊出日期:  2018-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭