Study on calibration of FADS system for air-breathing air-to-air missile
-
摘要: 针对自主研发的吸气式空空导弹FADS系统,利用FD-12风洞对其进行了标定研究。分析了风洞标定试验的技术特点,提出一种采用变支杆长度方法避开风洞试验台阶波的标定方案,包括支杆设计、模型加工、安装以及测压管路气密性检测等,在风洞中完成标定试验。试验结果表明:在Ma2.0~3.5范围内,FADS系统的测量误差精度全部达到设计目标,其中静压误差≤490Pa(≤3%)、马赫数误差≤0.1、迎角和侧滑角误差≤0.5°;与首次标定相比,各来流参数测量误差均减小,特别是Ma2状态下,静压最大相对误差由11.5%降低到3.0 %,马赫数最大误差由0.15下降到0.10,迎角最大误差由2.5°降低到0.5°,侧滑角最大误差由1.2°降低到0.5°。研究结果可为FADS系统设计提供技术参考。
-
关键词:
- 吸气式空空导弹 /
- 嵌入式大气数据传感系统 /
- 风洞试验标定 /
- 台阶波
Abstract: Aiming at the independently developed FADS system of the air-breathing air-to-air missile, the calibration is carried out by FD-12 wind tunnel. The technical characteristics of the wind tunnel calibration test are analyzed. The wind tunnel calibration scheme is proposed to avoid the step shock wave by using the variable length pole, mainly including the pole design, machining and installation of the model and the air tightness detection of the pressure pipe. The second calibration is done in FD-12 wind tunnel.The experimental results show that:in the range of Mach number from 2.0~3.5, the measurement error of FADS system achieves the design goal:the error of the static pressure is less than 490Pa (less than 3%), the error of Ma is less than 0.1, and both errors of the angle of attack and the angle of side slip are less than 0.5°. Compared with the calibration at first time, the errors of the flow parameter measurements are all reduced, especially for the Ma2 status where the maximum relative error of the static pressure decreases from 11.5% to 3.0%, the maximum error of Ma decreases from 0.15 to 0.10, the maximum error of angle of attack decreases from 2.5° to 0.5°, and the maximum error of angle of side slip decreases from 1.2° to 0.5°. The research results can provide technical reference for the design of FADS system. -
-
表 1 首次标定试验状态
Table 1 Test status for the first calibration
序号 来流参数 参数范围 1 Ma 2.0, 2.5, 3.0, 3.5, 4.0 2 迎角α/(°) -2, 0, 2, 4, 6, 10, 12 3 侧滑角β/(°) 0, -3, -5 4 静压p∞/kPa 参考风洞实际静压 表 2 首次标定误差统计表
Table 2 The error statistics of the first calibration
实验状态 静压误差
/Pa静压相对误差 马赫数误差 迎角误差
/(°)侧滑角误差/(°) Ma=2.0 ≤3000 ≤11.5% < 0.15 ≤2.5 ≤1.2 Ma=2.5 ≤970 ≤6.0% < 0.10 < 1.0 < 1.0 Ma=3.0 < 400 ≤4.4% < 0.10 < 1.0 < 1.0 Ma=3.5 < 300 ≤3.3% < 0.10 < 1.0 < 1.0 Ma=4.0 < 300 ≤6.9% < 0.10 < 1.0 < 1.0 表 3 两次标定结果对比(不含迎角±12°状态)
Table 3 Comparison of two calibration results without the angle of attack ±12°
试验马赫数 模型 静压误差
/Pa静压相对误差 马赫数误差 迎角误差
/(°)侧滑角误差/(°) 2.0 首次 ≤3000 ≤11.5% ≤0.15 ≤2.5 ≤1.2 二次 ≤490 ≤1.9% ≤0.05 ≤0.5 ≤0.5 2.5 首次 ≤970 ≤6.0% ≤0.10 ≤1.0 ≤1.0 二次 ≤400 ≤2.4% ≤0.05 ≤0.5 ≤0.5 3.0 首次 ≤400 ≤4.4% ≤0.10 ≤1.0 < 1.0 二次 ≤200 ≤2.4% ≤0.05 ≤0.5 ≤0.5 3.5 首次 ≤300 ≤3.3% ≤0.10 ≤1.0 ≤1.0 二次 ≤200 ≤3.0% ≤0.10 ≤0.5 ≤0.5 4.0 首次 ≤300 ≤6.9% ≤0.10 ≤1.0 ≤1.0 -
[1] Karlgaard C, Kutty P, Schoenenberger M, et al. Mars entry atmospheric data system trajectory reconstruction algorithms and flight results[R]. AIAA-2013-28, 2013.
[2] Baumann E, Pahle J W, Davis M C, et al. X-43A flush airdata sensing system flight-test results[R]. AIAA-2008-657, 2008.
[3] Ellsworth J C, Whitmore S A. Simulation of a flush air-data system for transatmospheric vehicles[J]. Journal of spacecraft and rocket, 2008, 45(4):716-73. DOI: 10.2514/1.33541
[4] 柏楠, 时兆峰, 苑景春, 等.嵌入式大气数据传感技术研究[J].飞航导弹, 2010, 8:79-85. http://d.old.wanfangdata.com.cn/Periodical/fhdd201008018 [5] 方习高, 陆宇平.嵌入式大气数据传感系统的求解算法研究[J].计算机测量与控制, 2008, 16(3):398-400. http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz200803037 Fang X G, Lu Y P. Research on algorithms of flush airdata sensing system[J]. Computer Measurement & Control, 2008, 16(3):398-400. http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz200803037
[6] 杨雨, 陆宇平, 吴在桂.嵌入式大气数据传感系统中的组合滤波技术[J].传感器与微系统, 2009, 28(5):117-120. DOI: 10.3969/j.issn.1000-9787.2009.05.038 Yang Y, Lu Y P, Wu Z G. Combination filter technology in flush air data sensing system[J]. Transducer and Microsystem Technologies, 2009, 28(5):117-120. DOI: 10.3969/j.issn.1000-9787.2009.05.038
[7] 沈国清, 陆宇平, 徐志晖.嵌入式大气数据传感系统误差分析[J].传感器与微系统, 2012, 31(6):62-65. DOI: 10.3969/j.issn.1000-9787.2012.06.019 Shen G Q, Lu Y P, Xu Z H. Error analysis of flush air data sensing system[J]. Transducer and Microsystem Technologies, 2012, 31(6):62-65. DOI: 10.3969/j.issn.1000-9787.2012.06.019
[8] 赵磊, 陆宇平.基于RBF神经网络的FADS系统及其算法研究[J].飞机设计, 2012(1):43-47. http://d.old.wanfangdata.com.cn/Periodical/fjsj201201010 Zhao L, Lu Y P. Research of algorithms of flush airdate sensing system based on RBF neural network[J]. Aircraft Design, 2012(1):43-47. http://d.old.wanfangdata.com.cn/Periodical/fjsj201201010
[9] 李其畅, 刘劲帆, 刘昕, 等.嵌入式大气数据三点解算方法初步研究[J].空气动力学学报, 2014, 32(3):360-363. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201403014 Li Q C, Liu J F, Liu X, et al. The primary study of 3-point calculation method for the flush air data system[J]. Acta Aero-dynamica Sinica, 2014, 32(3):360-363. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201403014
[10] 李清东, 陈璐璐, 张孝功, 等. FADS快速智能故障检测和诊断技术[J].系统工程与电子技术, 2009, 31(10):2544-2546. DOI: 10.3321/j.issn:1001-506X.2009.10.058 Li Q D, Chen L L, Zhang X G, et al. Flush airdata sensing system fast intelligent fault detection and diagnosis technology[J]. Systems Engineering and Electronics, 2009, 31(10):2544-2546. DOI: 10.3321/j.issn:1001-506X.2009.10.058
[11] 王鹏, 金鑫, 张卫民. FADS系统在各型号飞行器中的应用[J].飞航导弹, 2013, 2:75-79. http://d.old.wanfangdata.com.cn/Periodical/fhdd201302016 [12] 王鹏, 李秋红, 胡远思, 等.尖楔前体飞行器FADS-α的求解精度研究[J].中国科学:物理学力学天文学, 2015, 45(12):124709. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201512010.htm Wang P, Li Q H, Hu Y S, et al. Research on solving accuracy for FADS-α applied to the vehicle with sharp wedged fore-bodies[J]. Sci Sin:Phys Mech Astron, 2015, 45(12):124709. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201512010.htm
[13] 王鹏, 金鑫, 张卫民. FADS系统在尖楔前体高超声速飞行器中的应用[J].中国科学:物理学力学天文学, 2013, 43(9):1105-1110. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201309016.htm Wang P, Jin X, Zhang W M. Application of FADS system in hypersonic flight vehicles with sharp wedged fore-bodies[J]. Sci Sin:Phys Mech Astron, 2013, 43(9):1105-1110. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201309016.htm
[14] 秦永明, 张春, 董金刚.嵌入式大气数据传感系统风洞标定试验研究[J].空气动力学学报, 2015, 33(4):488-492. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201504008 Qin Y M, Zhang C, Dong J G. Experimental Study on flush air data sensing system calibration in wind tunnel[J]. Acta Aerodynamica Sinica, 2015, 33(4):488-492. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201504008
[15] 陈广强, 刘吴月, 豆修鑫, 等.吸气式空空导弹FADS系统设计[J].中国科学:技术科学, 2016, 46(11):1193-1206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016120800025025 Chen G Q, Liu W Y, Dou X X, et al. Flush air data sensing system design for air breathing air-to-air missile[J]. Sci Sin Tech, 2016, 46(11), 1193-1206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016120800025025
[16] 陈广强, 王贵东, 陈冰雁, 等.低成本飞行试验平台FADS技术研究[J].宇航学报, 2015, 36(10):1195-1202. DOI: 10.3873/j.issn.1000-1328.2015.10.014 Chen G Q, Wang G D, Chen B Y, et al. Study of flush air data system technology for low cost flight test platform[J]. Journal of Astronautics, 2015, 36(10):1195-1202. DOI: 10.3873/j.issn.1000-1328.2015.10.014
[17] 陈广强, 王贵东, 陈冰雁, 等.高超声速飞行器FADS算法研究[J].飞机设计, 2015, 35(6):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-QBZH201504009.htm Chen G Q, Wang G D, Chen B Y, et al. Study of flush air data system algorithms for hypersonic vehicle[J]. Aircraft Design, 2015, 35(6):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-QBZH201504009.htm