Progress of research on noise induced by compressible flow over cavities
-
摘要: 空腔是一种常见的飞行器结构,高速来流条件下,空腔流致噪声成为重要噪声源,制约飞行器性能的提高。针对空腔可压缩流致噪声问题的研究进展进行综述,分析空腔流激振荡及其诱导噪声的产生机制、参数影响规律与噪声控制技术发展趋势。基于空腔非定常流动及其诱导噪声特性,总结空腔可压缩流致噪声产生、传播规律以及相关研究方法,从来流参数、空腔形态、结构振动等关键参数出发,阐述空腔可压缩流致噪声的参数影响规律,总结空腔噪声控制技术的研究现状以及存在不足。最后,对空腔可压缩流致噪声问题研究面临的挑战和发展趋势进行展望。Abstract: The cavity is commonly employed in designing an aircraft. Nevertheless, the cavity flow, especially under high-speed conditions, is usually an important noise source, restricting the performance of the aircraft. The research progress on the cavity noise is summarized, including characteristics of the cavity oscillation, generation of the aeroacoustic noise, parameters which influence the cavity flow, and control of the cavity noise. The generation and propagation of the noise induced by the compressible flow over cavities are analyzed based on the characteristics of the unsteady cavity flow. Parameters that determine the cavity flow and noise are classified according to flow conditions, cavity geometry and structural vibrations. Furthermore, effects of these parameters on the cavity noise are considered, and the passive and active control techniques are summarized. Finally, challenges and future directions of researches on the cavity noise are outlined.
-
Keywords:
- cavity /
- compressible flow /
- aeroacoustics /
- noise control /
- flow-induced oscillation
-
0 引言
随着新型耐高温材料的出现和防热技术的发展, 现代新型高超声速飞行器在追求大升阻比和高机动性的过程中逐渐开始采用尖前缘结构[1-2]。但尖前缘结构会带来热流密度大, 防热困难的问题, 另外, 新型高超声速飞行器为保持高升阻比特性, 需要维持外形, 采用的非烧蚀热防护技术对尖前缘部位的热环境预测精度提出了更高的要求。
高超声速气动热测量试验主要在激波风洞中进行, 该类型风洞具有运行时间短、模型振动大的特点。因此对气动热测量技术提出了响应快、温升大、对模型振动不敏感的要求。气动热测量试验技术主要分为两类:一类是点测量技术, 包括薄膜电阻温度计[3-4]、热电偶[5]和量热计[6]等; 另一类是面测量技术, 包括红外热图技术[7]、温敏漆技术[8]和磷光热图技术[9]等。面测量技术可直观地显示飞行器模型表面温度和热流分布情况。但尖前缘结构存在涂层喷涂、光路布置双重困难, 以及模型振动会严重影响光学测量精度的问题, 因此尖前缘驻点热流测量还是主要依靠响应快的薄膜电阻温度计和同轴热电偶。
常用的薄膜电阻温度计和同轴热电偶通常为圆柱形。德国亚琛工业大学研制的镍铬-康铜同轴热电偶最小直径约为1.9 mm[10]。而美国Calspan实验室研制的薄膜电阻温度计, 其直径为1.0 mm[11], 是目前欧美国家制造出的尺寸最小的圆柱形热流传感器。国内中国航天空气动力技术研究院的薄膜电阻温度计最小直径为1.5 mm, 中国科学院力学研究所和中国航天空气动力技术研究院的同轴热电偶直径仅为1.4 mm[12]。中国空气动力研究与发展中心开展了直径1.0 mm的薄膜电阻温度计和同轴热电偶技术研究[13]。虽然热流传感器的尺寸越来越小, 但是依旧无法满足激波风洞中缩比模型尖前缘驻点热流精细化测量的需求。2011年陈星等发展了一种具有更高空间分辨率的型面状薄膜电阻温度计, 其敏感元件宽约0.1 mm, 长1.3 mm, 可用于R=1.0 mm前缘驻点热流测量[14-15]。中国科学院力学研究所的吴松等提出一种整体式热电偶传感器的设计思想, 该传感器电偶丝的最小直径仅0.1 mm, 可以满足R=0.5 mm驻点热流的测量需求[16]。
近年来, 国内针对尖前缘驻点热流测量发展的整体式热流传感器, 可以满足最小前缘半径R=0.5 mm的驻点热流测量需求。由于驻点热流与半径的平方根成反比, 前缘半径越小, 驻点热流越高, 模型前缘温升越大, 传感器基底材料热物性参数随温度的变化影响越来越大, 另外, 尖前缘部位曲率大, 三维热传导的影响也需要考虑, 如何由整体式传感器直接测量获得的温度数据准确辨识驻点热流仍是一个难题。为此, 本文开展尖前缘驻点热流精细化测量试验技术研究, 制作了专用的尖前缘驻点热流测量传感器, 建立了尖前缘驻点热流辨识方法, 并以不同前缘半径的斜劈模型为研究对象在高超声速脉冲风洞中开展了风洞验证试验。
1 传感器研制
为解决传感器测量端面对前缘型面的破坏, 采用一体化技术将薄膜电阻温度计与模型结合到一起, 在尖前缘外形的玻璃基底上进行镀膜, 制成整体式传感器。用于热流测量的温敏铂薄膜长度为2.0 mm, 宽度为0.2 mm, 薄膜长度方向与前缘纵向一致, 如图 1和2所示, 由于无后掠二维前缘驻点热流沿长度方向不发生变化, 因此在前缘无后掠的情况下, 薄膜长度对驻点热流测量没有影响。按连续流Lees二维圆柱热流计算公式[17], 对于R=1.0 mm前缘, 0.2 mm宽的薄膜所覆盖的前缘周向角为11.5°, 薄膜宽度引起的热流测量误差小于0.2%, 可以忽略。上述分析表明, 整体式传感器以及沿前缘长度方向镀膜的方案满足尖前缘驻点热流测量的需要。
2 数据处理方法
现有风洞气动热试验热流数据后处理方法多采用基于一维半无限大假设的Cook-Felderman公式[18], 通过数值积分的方法获得传感器表面热流, 如式(1)所示。
(1) 其中, ρ、c、k分别为基底材料的热物性参数密度、比热容和导热系数。
在尖化前缘区域热流值高, 表面曲率变化大。由于热流较高, 在相同的试验时间内, 基底温升较高, 基底材料的热物性会随着基底材料温度的升高而发生较大变化, 其变化对最终热流的计算会产生重大的影响。此外, 对于尖前缘及局部曲率变化大的地方, 存在严重的三维导热现象, 而目前国内在测热数据后处理上多基于一维半无限大假设原理, 采用Cook-Felderman方法, 该方法没有考虑热物性参数的变化及三维导热现象对试验结果的影响。而这2种因素在高热流、大曲率下为影响测热精度的重要因素。
2.1 热物性参数变化影响
随着温度的变化, 材料的热物性会发生显著的变化, 文献[19]指出材料的热物性是影响测量结果的重要因素。式(1)热流计算中假设基底材料的热物性在试验过程中为一常数, 忽略了热物性的变化, 该假设在温升小的情况下误差较小。但在一些气动加热严重, 温升高的区域(比如激波干扰区、尖化前缘驻点等), 传感器的基底材料热物性变化较大, 会对试验测量精度产生重要的影响。
目前在中国航天空气动力技术研究院高超声速脉冲风洞中所采用的整体式传感器基底材料为高硼硅酸玻璃, 文献[20]给出了该基底材料的热物性参数随温度的变化情况, 如图 3所示。
由图可知, 随着传感器表面温度的升高, 基底材料的热扩散率逐渐增大, 在表面温度为100 K时, 集中热物性
的变化在50%以上。因此风洞试验中, 在一些温度升高较大的区域, 基底材料热物性变化显著, 须考虑基底材料热物性变化对测量结果的影响。随着基底材料热扩散率的增加, 在相同的热流作用下, 材料表面温升将有所降低。采用现有的热流计算方法分别计算常物性和变物性2种工况下的热流值, 如图 4所示。可以看出, 按照现有热流后处理方法, 随着表面温度的变化, 热流计算结果会带来较大的误差。在表面温度升高100 K以上时, 热流计算误差已在10%以上, 因此在热流测量中, 尤其是在大温升的地方, 必须改进现有的数据后处理方法。
2.2 多维热传导影响
Cook-Felderman公式是基于一维半无限大假设得出的, 忽略了周向热传导, 认为热量只沿着壁厚方向传导。但是在尖前缘位置, 前缘半径很小, 周向导热不能忽略, 该假设已不再适用, 必须考虑三维热传导对热流计算的影响。为此采用有限元数值计算的方法, 针对研制的整体式热流传感器, 研究了多维热传导对热流计算结果的影响。
在笛卡尔坐标系下, 多维非稳态导热方程(忽略源项)如下:
(2) 采用有限体积法的离散格式, 研究了前缘半径和试验时间对热流计算结果的影响。基底材料初始温度为297.15 K, 图 5为加载不同热流条件下半径1 mm的前缘表面温升。从图 5可以看出, 随着加热时间的增加, 采用一维热传导和三维热传导计算获得的表面温升差距越来越大, 因此加热时间越长三维热传导现象越严重; 在前缘加载30 ms的1000 kW/m2热流, 采用一维热传导和三维热传导计算获得的模型表面温差超过了20 K。因此, 在前缘热流测量中, 三维热传导现象不能忽略。
表 1为在不同热流条件下, 根据传感器表面温升, 分别采用Cook-Felderman公式和三维热传导的数据处理方法计算获得的模型表面热流。对比可知, 不同热流条件下, 在同一时刻, 三维热传导现象对热流计算的影响相同, 这说明三维热传导的影响只与模型的几何尺寸及加热时间有关, 与来流条件无关。随着加热时间的增加, 三维热传导的影响越来越大。
表 1 不同来流条件测量误差随计算时间变化情况Table 1 Measured heat flux error deviation with time under various flow conditionsQ/(kW·m-2) Time/ms Q1D/Q3D* 100 5 0.976 10 0.942 20 0.876 30 0.825 500 5 0.976 10 0.942 20 0.876 30 0.825 1000 5 0.976 10 0.942 20 0.876 30 0.825 *: Q1D采用一维热传导计算值, Q3D采用三维热传导计算值。 为了研究几何尺寸对三维热传导的影响, 对不同前缘半径模型的驻点热流进行了计算, 结果如图 6所示。对比可知, 在相同的热流条件下, 随着前缘半径的减小, 模型前缘表面温升越来越低, 三维热传导越来越严重。
多维热传导的影响程度与模型前缘半径大小和试验时间有关, 在相同的试验时间内, 前缘半径越小, 三维热传导的影响越大。对于同一前缘半径, 随着试验时间的增加, 三维热传导的影响越来越大。
2.3 数据修正方法
通过上述分析可知, 尖前缘驻点热流测量试验中, 前缘半径较小, 驻点区域热流较大, 温升较高。试验过程中传感器基底材料热物性参数变化大, 三维热传导现象比较严重。因此, 这2个因素对热流的影响较大, 不能再忽略。对于非线性多维热传导的计算方法很多, 但是能运用到工程实际中, 可快速计算出热流值指导试验的很少。本文在原有Cook-felderman公式的基础上引入修正因子Φ, 其中Φ是与模型表面温升、前缘半径和试验时间相关的量。此时热流计算公式可以转化为:
(3) 式中, Φ=185.61(13.3τ+0.6)R-0.27T-0.25, τ为试验时间, R为前缘半径, T是表面温升(由薄膜电阻温度计测得)。
为了对比试验数据, 采用经典的Fay-Riddell驻点热流计算公式[21]对二维楔面模型前缘驻点热流进行理论计算:
(4) 其中q2D为二维楔面模型前缘驻点热流, qR为相同半径球头驻点热流(球头驻点热流采用Fay-Riddell公式计算)。
3 风洞验证试验
为了验证传感器的性能和数据处理方法的精度, 以前缘半径分别为1、2和5 mm的斜楔模型(见图 7)为研究对象, 开展不同半径前缘驻点热流的测量试验。来流实际马赫数为4.02、4.92、5.92和7.97, 试验在中国航天空气动力技术研究院(CAAA)的FD-20高超声速脉冲风洞(见图 8)中进行, 该风洞有2种不同的运行方式:带有活塞和不带活塞, 采用整体式薄膜电阻温度计进行驻点热流测量。
来流总压由安装在前室管壁上的压力传感器测出, 总温根据理想激波管理论和等熵关系式计算得出, 其他流场参数是假定气流在喷管中作等熵膨胀计算得出的, 具体来流参数如表 2所示。
表 2 试验来流参数Table 2 Test conditionsFlow condition Ma po/MPa To/K Re/m-1 Piston (1) 4.02 2.00 624.7 2.92×107 NO (2) 4.92 3.08 631.6 2.81×107 NO (3) 5.92 6.56 909.7 2.21×107 YES (4) 7.97 19.36 960.0 2.83×107 YES 表 3为不同来流条件下, 不同前缘半径模型驻点热流试验测量值、理论值及误差分布。对比可知, 在相同来流条件下, 驻点热流随着前缘半径的增加而逐渐减小。在来流条件(1), 前缘半径R=1 mm时, 驻点热流测量误差为-14.79%;前缘半径R=2 mm时, 驻点热流测量误差为-2.63%;而前缘半径增大到R=5 mm时, 驻点热流测量值比理论值大, 测量误差为+7.26%, 该规律与文献[4]规律一致, 随着前缘半径的增加, 驻点热流测量值逐渐由小于理论值变为大于理论值。
表 3 不同来流条件下尖前缘驻点热流测量结果及误差Table 3 Measured heat flux and errorsFlowcondition R=1 mm R=2 mm R=5 mm (1) Qt/(kW·m-2) 1154.5 816.3 516.3 Qexp/(kW·m-2) 983.7 794.9 553.8 Error -14.79% -2.63% +7.26% (2) Qt/(kW·m-2) 721.0 Qexp/(kW·m-2) 676.4 Error -6.19% (3) Qt/(kW m-2) 1921.2 1358.5 859.2 Qexp/(kW·m-2) 1097.0 956.4 676.2 Error -42.9% -29.6% -21.3% (4) Qt/(kW·m-2) 1331.8 Qexp/(kW·m-2) 952.4 Error -28.49% Error=(Qexp-Qt)/Qt×100%, Qt为理论值, Qexp为试验测量值, Qexp.m为修正后的试验测量值 对比不同来流条件下相同前缘半径的驻点热流测量误差可以看出, 在来流条件(1)和(2)下, 驻点热流测量误差均小于15%, 而在来流条件(3)和(4)下, 驻点热流测量误差明显增大。在来流条件(3)下, R=1 mm时, 驻点热流测量误差高达-42.9%。造成这种差异的主要原因是风洞运行方式不同, 来流条件(1)和(2)使用的是激波风洞运行方式, 试验中不使用活塞, 试验气流的总压和总温提高是通过激波压缩实现的, 而来流条件(3)和(4)采用的是炮风洞运行方式, 试验中采用活塞压缩来提高气流的总压和总温。不同的风洞运行方式建立有效流场经历的时间不同, 从而使得驻点位置三维热传导程度和传感器基底材料的热物性参数变化程度不同。炮风洞运行方式建立有效流场需要经历的时间明显高于激波风洞运行方式, 使得驻点位置三维热传导程度和传感器基底材料的热物性参数变化明显高于激波风洞运行方式, 从而造成炮风洞运行方式测量获得的驻点热流明显小于理论值, 因此需要对炮风洞运行方式下驻点热流的测量值进行修正。
采用式(3)的数据处理方法对炮风洞运行方式下的驻点热流测量结果进行了修正, 数据修正前后对比如表 4所示, 经过该方法修正后的驻点热流数据与理论值的误差在10%以内, 说明使用该数据处理方法处理高超声速炮风洞驻点热流测量结果具有较高的精度。
表 4 修正前后测量结果对比Table 4 Comparison of measured and modified heat fluxFlow condition R=1 mm R=2 mm R=5 mm (3) Qt/(kW·m-2) 1921.2 1358.5 859.2 Qexp/(kW·m-2) 1097.0(-42.9%) 956.4(-29.6%) 676.2(-21.3%) Qexp.m/(kW·m-2) 1808.7(-5.86%) 1339.2(-1.42%) 817.6(-4.84%) (4) Qt/(kW·m-2) 1331.8 Qexp/(kW·m-2) 952.4(-28.49%) Qexp.m/(kW·m-2) 1322.93(-0.67%) 4 结论
针对尖前缘驻点热流测量难题, 制作了整体式传感器, 对影响尖前缘驻点热流测量精度的主要因素进行了分析, 获得了传感器基底材料热物性参数变化和三维热传导现象对试验测量结果的影响, 提出了一种新的试验数据修正方法。最后, 以不同前缘半径斜劈模型为研究对象, 开展了风洞验证试验。通过分析与对比, 得到以下结论:
(1) 随着传感器表面温度的升高, 基底材料的热扩散率逐渐增加, 从而使得传感器基底材料的温升减小, 热流测量结果偏低。
(2) 在尖前缘位置, 由于前缘半径很小, 模型表面不再满足一维半无限大假设, 须考虑三维热传导的影响。
(3) 模型表面的三维热传导对驻点热流测量结果的影响只与模型的几何尺寸及试验时间有关, 与来流条件无关。前缘半径越小, 风洞运行时间越长, 三维热传导的影响程度越大。
(4) 基于试验时间、前缘半径和表面温升的数据修正方法进行尖前缘驻点热流数据的修正具有较高的精度。
-
-
[1] Shaw L, Clark R, Talmadge D. F-111 generic weapons bay acoustic environment[J]. J Aircraft, 1988, 25(2):147-153. DOI: 10.2514/3.45555
[2] Rowley C W, Williams D R. Dynamics and control of high-Reynolds-number flow over open cavities[J]. Annu Rev Fluid Mech, 2006, 38(1):251-276. DOI: 10.1146/annurev.fluid.38.050304.092057
[3] Heller H H, Holmes D G, Covert E E. Flow-induced pressure oscillations in shallow cavities[J]. J Sound Vib, 1971, 18(4):545-553. DOI: 10.1016/0022-460X(71)90105-2
[4] Stallings R L, Wilcox F J. Experimental cavity pressure distributions at supersonic speeds[R]. NASA TP-2683, 1987.
[5] Sarohia V. Experimental investigation of oscillations in flows over shallow cavities[J]. AIAA J, 1997, 15(7):984-991. DOI: 10.2514-3.60739/
[6] Rossiter J E. Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[R]. Aeronautical Research Council Reports and Memoranda, TR-3438, 1964.
[7] Tam C K W, Block P J W. On the tones and pressure oscillations induced by flow over rectangular cavities[J]. J Fluid Mech, 1978, 89(2):373-399. DOI: 10.1017/S0022112078002657
[8] Arunajatesan S, Barone M F, Wagner J L, et al. Joint experimental/computational investigation into the effects of finite width on transonic cavity flow[R]. AIAA 2014-3027, 2014.
[9] Bres G A, Colonius T. Three-dimensional instabilities in compressible flow over open cavities[J]. J Fluid Mech, 2008, 599:309-339. http://meetings.aps.org/Meeting/DFD05/Event/36492
[10] Crook S D, Lau T C W, Kelso R M. Three-dimensional flow within shallow, narrow cavities[J]. J Fluid Mech, 2013, 735:587-612. DOI: 10.1017/jfm.2013.519
[11] Beresh S J, Wagner J L, Demauro E P, et al. Resonance characteristics of transonic flow over a rectangular cavity using pulse-burst PIV[R]. AIAA 2016-1344, 2016.
[12] Beresh S J, Wagner J L, Casper K M, et al. Spatial distribution of resonance in the velocity field for transonic flow over a rectangular cavity[J]. AIAA J, 2017, 55(7):1-16.
[13] Beresh S J, Wagner J L, Casper K M. Compressibility effects in the shear layer over a rectangular cavity[J]. J Fluid Mech, 2016, 808:116-152. DOI: 10.1017/jfm.2016.540
[14] 杨党国, 范召林, 李建强, 等.后壁倒角对空腔噪声的抑制效果[J].实验流体力学, 2010, 24(5):22-25. DOI: 10.3969/j.issn.1672-9897.2010.05.005 Yang D G, Fan Z L, Li J Q, et al. Suppression effects of rear-face angle of cavity on its aerodynamics noise[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(5):22-25. DOI: 10.3969/j.issn.1672-9897.2010.05.005
[15] 侯中喜, 夏刚, 秦子增.三维超声速开式空腔振荡特性研究[J].国防科技大学学报, 2004, 26(6):1-4. DOI: 10.3969/j.issn.1001-2486.2004.06.001 Hou Z X, Xia G, Qin Z Z. The numerical analysis of oscillatory characteristics in 3D supersonic open cavity[J]. Journal of National University of Defense Technology, 2004, 26(6):1-4. DOI: 10.3969/j.issn.1001-2486.2004.06.001
[16] 司海清, 马晓晖, 陈都, 等.偏航状态下空腔流动的数值模拟[J].南京航空航天大学学报. 2013, 45(2):191-195. DOI: 10.3969/j.issn.1005-2615.2013.02.006 Si H Q, Ma X H, Chen D, et al. Numerical simulation of cavity flow at different yaw angles[J]. Journal of Nanjing University of Aeronautics and Astronautic, 2013, 45(2):191-195. DOI: 10.3969/j.issn.1005-2615.2013.02.006
[17] 李晓东, 刘婧东, 高军辉.空腔流激振荡发声的数值模拟研究[J].力学学报, 2006, 38(5):599-604. http://d.old.wanfangdata.com.cn/Periodical/lxxb200605004 Li X D, Liu J D, Gao J H. Numerical simulation of flow-induced oscillation and sound generation in a cavity[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5):599-604. http://d.old.wanfangdata.com.cn/Periodical/lxxb200605004
[18] 刘俊, 杨党国, 王显圣, 等.湍流边界层厚度对三维空腔流动的影响[J].航空学报, 2016, 37(2):475-483. http://d.old.wanfangdata.com.cn/Periodical/hkxb201602011 Liu J, Yang D G, Wang X S, et al. Effect of turbulent boundary layer thickness on a three-dimensional cavity flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):475-483. http://d.old.wanfangdata.com.cn/Periodical/hkxb201602011
[19] Rowley C W, Colonius T, Basu A J On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities[J]. J Fluid Mech, 2002, 455(455):315-346. DOI: 10.1017-S0022112001007534/
[20] Krishnamurty K. Sound radiation from surface cutouts in high speed flow[D]. California: California Institute of Technology, 1956. http://www.researchgate.net/publication/35133550_Sound_radiation_from_surface_cutouts_in_high_speed_flow
[21] Wagner J, Beresh S J, Casper K M, et al. Relationship between transonic cavity tones and flowfield dynamics using pulse-burst PIV[R]. AIAA 2016-1345, 2016. http://www.researchgate.net/publication/313844747_Relationship_between_Transonic_Cavity_Tones_and_Flowfield_Dynamics_using_Pulse-Burst_PIV
[22] Zhang X. Compressible cavity flow oscillation due to shear layer instabilities and pressure feedback[J]. AIAA J, 1995, 33(8):1404-1411. DOI: 10.2514/3.12845
[23] Forestier N, Jacquin L, Geffroy P. The mixing layer over a deep cavity at high-subsonic speed[J]. J Fluid Mech, 2003, 475(475):101-145. http://adsabs.harvard.edu/abs/2003JFM...475..101F
[24] Beresh S J, Wagner J L, M P B O, et al. Supersonic flow over a finite-width rectangular cavity[J]. AIAA J, 2015, 53(2):296-310. DOI: 10.2514/1.J053097
[25] Lada C, Kontis K. Experimental studies of open cavity configurations at transonic speeds with flow control[J]. J Aircraft, 2011, 48(2):719-724. DOI: 10.2514/1.C031174
[26] Zhang X. Experimental investigation of supersonic flow over two cavities in tandem[J]. AIAA J, 2015, 30(2):1182-1190. http://www.researchgate.net/publication/245423833_Experimental_investigation_of_supersonic_flow_over_two_cavities_in_tandem
[27] Handa T, Miyachi H, Kakuno H, et al. Generation and propagation of pressure waves in supersonic deep-cavity flows[J]. Exp Fluids., 2012, 53(6):1855-1866. DOI: 10.1007/s00348-012-1400-7
[28] Zhuang N. Experimental investigation of supersonic cavity flow and their control[J]. Dissertation & Theses-Gradworks, 2007, 44(9):2118-2128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214405054
[29] Zhuang N, Alvi F S, Alkislar M B, et al. Supersonic cavity flows and their control[J]. AIAA J, 2006, 44(9):2118-2128. DOI: 10.2514/1.14879
[30] Wang M, Freund J B, Lele S K. Computational prediction of flow-generated sound[J]. Annu Rev Fluid Mech, 2006, 38(1):483-512. DOI: 10.1146/annurev.fluid.38.050304.092036
[31] 杨党国, 罗新福, 李建强, 等.来流边界层厚度对开式空腔气动声学特性的影响分析[J].空气动力学学报, 2011, 29(4):486-490. DOI: 10.3969/j.issn.0258-1825.2011.04.015 Yang D G, Luo X F, Li J Q, et al. Analysis of aeroacoustic characteristics in open cavities influenced by boundary-layer thickness[J]. Acta Aerodynamica Sinica, 2011, 29(4):486-490. DOI: 10.3969/j.issn.0258-1825.2011.04.015
[32] 赵小见, 赵磊, 冯峰, 等.某空腔低速流动噪声风洞试验[J].航空学报, 2015, 36(7):2145-2154. http://d.old.wanfangdata.com.cn/Periodical/hkxb201507006 Zhao X J, Zhao L, Feng F, et al. Wind tunnel test into noise induced by low-speed cavity flow[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2145-2154. http://d.old.wanfangdata.com.cn/Periodical/hkxb201507006
[33] 吴继飞, 徐来武, 范召林, 等.开式空腔气动声学特性及其流动控制方法[J].航空学报, 2015, 36(7):2155-2165. http://d.old.wanfangdata.com.cn/Periodical/hkxb201507007 Wu J F, Xu L W, Fan Z L, et al. Aeroacoustic characteristics and flow control method of open cavity flow[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2155-2165. http://d.old.wanfangdata.com.cn/Periodical/hkxb201507007
[34] Yamouni S, Sipp D, Jacquin L. Interaction between feedback aeroacoustic and acoustic resonance mechanisms in a cavity flow:a global stability analysis[J]. J Fluid Mech, 2013, 717(2):134-165. http://europepmc.org/abstract/MED/23324842
[35] Fontaine R A, Elliott G S, Austin J M, et al. Very near-nozzle shear-layer turbulence and jet noise[J]. J Fluid Mech, 2015, 770:27-51. DOI: 10.1017/jfm.2015.119
[36] 司海清, 王同光.边界条件对三维空腔流激振荡的影响[J].南京航空航天大学学报, 2006, 38(5):595-599. DOI: 10.3969/j.issn.1005-2615.2006.05.013 Si H Q, Wang T G. Influence of boundary conditions on 3D cavity flow induced oscillations[J]. Nanjing University of Aeroacoustics & Astronautics, 2006, 38(5):595-599. DOI: 10.3969/j.issn.1005-2615.2006.05.013
[37] Lai H, Luo K H. Acoustic source and near field of three-dimensional compressible flow over an open cavity[R]. AIAA 2005-2805, 2005.
[38] Chen X X, Sandham N D, Zhang X. Cavity flow noise predictions[R]. University of Southampton Report, AFM-07/05, 2007.
[39] 杨党国, 李建强, 梁锦敏.基于CFD和气动声学理论的空腔自激振荡发声机理[J].空气动力学学报, 2010, 28(6):724-730. DOI: 10.3969/j.issn.0258-1825.2010.06.019 Yang D G, Li J Q, Liang J M, et al. Sound generation induced by self-sustained oscillations inside cavities based on CFD and aeroacoustic theory[J]. Acta Aerodynamica Sinica, 2010, 28(6):724-730. DOI: 10.3969/j.issn.0258-1825.2010.06.019
[40] Gai S L, Kleine H, Neely A J Supersonic flow over a shallow open rectangular cavity[J]. J Aircraft, 2015, 52(2):609-616. DOI: 10.2514/1.C032781
[41] 杨党国, 祝静, 李建强, 等.跨超声速开式空腔流激振荡模态预估分析[J].空气动力学学报, 2014, 32(3):369-375. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201403016 Yang D G, Zhu J, Li J Q, et al. Prediction and analysis of flow oscillation modes inside open cavities at transonic or supersonic speeds[J]. Acta Aerodynamica Sinica, 2014, 32(3):369-375. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201403016
[42] 万振华, 周林, 孙德军.方腔流致振荡及噪声的数值研究[J].空气动力学学报, 2012, 30(3):291-298. DOI: 10.3969/j.issn.0258-1825.2012.03.003 Wan Z H, Zhou L, Sun D J Numerical investigation of flow induced oscillations and noise in a rectangular cavity[J]. Acta Aerodynamica Sinica, 2012, 30(3):291-298. DOI: 10.3969/j.issn.0258-1825.2012.03.003
[43] Rockwell D, Naudascher E. Review-self-sustaining oscillations of flow past cavities[J]. J Fluids Eng, 1978, 100(2):152-165. DOI: 10.1115/1.3448624
[44] Lawson S. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Prog Aerospace Sci, 2011, 47(3):186-216. DOI: 10.1016/j.paerosci.2010.11.002
[45] Sun Y, Nair A G, Taira K, et al. Numerical simulations of subsonic and transonic open-cavity flows[R]. AIAA 2014-3092, 2014. http://www.researchgate.net/publication/269229214_numerical_simulations_of_subsonic_and_transonic_open-cavity_flows
[46] 杨党国, 范召林, 李建强, 等.弹舱流动特性数值模拟及风洞试验研究[J].空气动力学学报. 2009, 27(3):378-383. DOI: 10.3969/j.issn.0258-1825.2009.03.021 Yang D G, Fan Z L, Li J Q, et al. Studies on flow characteristics of cavity by numerical simulation and wind tunnel test[J]. Acta Aerodynamica Sinica, 2009, 27(3):378-383. DOI: 10.3969/j.issn.0258-1825.2009.03.021
[47] Ahuja K. Effects of cavity dimensions, boundary layer, and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes[R]. NASA Contractor Report 4653, 1995.
[48] Schmit R F, Grove J E, Semmelmayer F, et al. Nonlinear feedback mechanisms inside a rectangular cavity[J]. AIAA J, 2014, 52(10):2127-2141. DOI: 10.2514/1.J052804
[49] Moon S J, Gai S L, Kleine H, et al. Supersonic flow over straight shallow cavities including leading and trailing edge modifications[R]. AIAA 2010-4687, 2010. DOI: 10.2514/6.2010-4687
[50] Robertson G, Kumar R, Doyle S, et al. Acoustics of a supersonic cavity with a generic store[R]. AIAA 2015-1292, 2015. DOI: 10.2514/6.2015-1292
[51] Gharib M. Response of the cavity shear layer oscillations to external forcing[J]. AIAA J, 1987, 25(1):43-47. DOI: 10.2514/3.9576
[52] Daoud M, Naguib A M, Bassioni I, et al. Microphone-array measurements of the floor pressure in a low-speed cavity flow[J]. AIAA J, 2006, 44(9):2018-2023. DOI: 10.2514/1.18129
[53] Gloerfelt X. Cavity noise[C]. VKI Lecture: Aerodynamic noise from wall bounded flows, Brussels, 2009.
[54] Chung K. Characteristics of compressible rectangular cavity flows[J]. J Aircraft, 2003, 40(1):137-142. DOI: 10.2514/2.3068
[55] Baseley J, Pastur L R, Lusseyran F, et al. On the modulating effect of three-dimensional instabilities in open cavity flows[J]. J Fluid Mech, 2014, 759:546-578. DOI: 10.1017/jfm.2014.576
[56] Baseley J, Pastur L R, Delprat N, et al. Space-time aspects of a three-dimensional multi-modulated open cavity flow[J]. Phys Fluids, 2013, 25(6):64105. DOI: 10.1063/1.4811692
[57] Tracy M B, Plentovich E B, Hemsch M J, et al. Effects of sweep on cavity flow fields at subsonic and transonic speeds[R]. NASA TM-2012-217577, 2012. https://core.ac.uk/display/10568231
[58] Vikramaditya N S, Kurian J Nonlinear aspects of supersonic flow past a cavity[J]. Exp Fluids, 2012, 52(6):1389-1399. DOI: 10.1007/s00348-012-1261-0
[59] Kim H J, Aradag S, Knight R D. Two and three dimensional simulations of supersonic cavity flow[R]. AIAA 2006-2431, 2006. https://www.ixueshu.com/document/914fd23eb580fb6e318947a18e7f9386.html
[60] Wagner J L, Beresh S J, Casper K M, et al. Experimental investigation of aspect-ratio effects in transonic and subsonic rectangular cavity flows[R]. AIAA 2014-1446, 2014.
[61] Beresh S J, Wagner J L, Pruett B O M. Particle image velocimetry of a three-dimensional supersonic cavity flow[R]. AIAA 2012-0030, 2012. http://www.researchgate.net/publication/268471908_Particle_Image_Velocimetry_of_a_Three-Dimensional_Supersonic_Cavity_Flow
[62] Das R, Kim H D, Kurian J Experimental study of supersonic entrainment using a cavity[J]. J Propul Power, 2014, 30(5):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0234271949
[63] Ukeiley L, Sheehan M, Coiffet F, et al. Control of pressure loads in geometrically complex cavities[J]. J Aircraft, 2008, 45(3):1014-1024. DOI: 10.2514/1.33324
[64] Casper K M, Wagner J L, Beresh S J, et al. Complex geometry effects on subsonic cavity flows[R]. AIAA 2015-1291, 2015. https://www.researchgate.net/publication/306305839_Complex_Geometry_Effects_on_Subsonic_Cavity_Flows
[65] Casper K M, Wagner J L, Beresh S J, et al. Complex geometry effects on supersonic cavity flows[R]. AIAA 2014-3025, 2014.
[66] Crafton J, Stanfield S, Rogoshchenkov N, et al. Investigation of Passive Flow Control of Cavity Acoustics Using Dynamic Pressure-Sensitive Paint[R]. AIAA 2017-1178, 2017.
[67] 吴继飞, 徐来武, 范召林, 等.内埋弹舱舱门气动特性研究[J].空气动力学学报, 2012, 30(6):744-748. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201206010 Wu J F, Xu L W, Fan Z L, et al. Investigation on aerodynamic characteristics of internal bay's door[J]. Acta Aerodynamica Sinica, 2012, 30(6):744-748. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201206010
[68] 吴继飞, 徐来武, 范召林, 等.内埋武器舱舱门开闭动态模拟试验技术研究[J].实验流体力学, 2015, 29(4):88-94. http://www.syltlx.com/CN/abstract/abstract10865.shtml Wu J F, Xu L W, Fan Z L, et al. Investigation on dynamic simulation technology of internal weapon bay's doors opening and closing[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4):88-94. http://www.syltlx.com/CN/abstract/abstract10865.shtml
[69] Flora T J, Reeder M F, Lofthouse A, et al. Dynamic store release of ice models from a cavity into Mach 2. 9 Flow[J]. J Aircraft, 2014, 51(6):1-15. DOI: 10.2514/1.C032459
[70] Merrick J D, Reeder M F. Cavity-store interaction under supersonic freestream conditions[R]. AIAA 2015-3017, 2015. http://www.researchgate.net/publication/299644306_Cavity-Store_Interaction_under_Supersonic_Freestream_Conditions
[71] 吴继飞, 罗新福, 范召林.内埋式弹舱流场特性及武器分离特性改进措施[J].航空学报, 2009, 30(10):1840-1845. DOI: 10.3321/j.issn:1000-6893.2009.10.008 Wu J F, Luo X F, Fan Z L, et al. Flow control method to improve cavity flow and store separation characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1840-1845. DOI: 10.3321/j.issn:1000-6893.2009.10.008
[72] Coley C J, Lofthouse A J. Correlation of weapon bay resonance and store unsteady force and moment loading[R]. AIAA 2012-0415, 2012. http://www.researchgate.net/publication/269045805_Correlation_of_Weapon_Bay_Resonance_and_Store_Unsteady_Force_and_Moment_Loading
[73] Murray N E, Jansen B J, Gui L, et al. Measurements of store separation dynamics[R]. AIAA 2009-105, 2009. http://www.researchgate.net/publication/269061737_measurements_of_store_separation_dynamics
[74] Bjorge S T, Reeder M F, Subramanian C, et al. Flow around an object projected from a cavity into a supersonic freestream[J]. AIAA J, 2005, 43(7):1465-1475. DOI: 10.2514/1.10943
[75] Wagner J L, Casper K M, Beresh S J, et al. Experimental investigation of fluid-structure interactions in compressible cavity flows[R]. AIAA 2013-3172, 2013. http://www.researchgate.net/publication/269049382_Experimental_Investigation_of_Fluid-Structure_Interactions_in_Compressible_Cavity_Flows
[76] Wagner J L, Beresh S J, Casper K M, et al. Simultaneous vibration and acoustic measurements of a store in compressible open cavity flow[R]. AIAA 2013-0228, 2013. http://www.researchgate.net/publication/287096751_Simultaneous_vibration_and_acoustic_measurements_of_a_store_in_compressible_open_cavity_flow
[77] Wagner J Fluid-structure interactions in compressible cavity flows[J]. Phys Fluids, 2015, 27(6):152-165. DOI: 10.1063/1.4922021
[78] Barone M, Arunajatesan S. Pressure loading within rectangular cavities with and without a captive store[R]. AIAA 2014-1406, 2014. http://www.researchgate.net/publication/269247720_Pressure_Loading_Within_Rectangular_Cavities_With_and_Without_a_Captive_Store
[79] 王显圣, 杨党国, 刘俊, 等.弹性空腔流致噪声/结构振动特性试验[J].航空学报, 2017, 38(7):120873. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=HKXB201707015&dbname=CJFD&dbcode=CJFQ Wang X S, Yang D G, Liu J, et al. Test on interactions between aeroacoustic noise and structural vibration in elastic cavity flow[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):120873. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=HKXB201707015&dbname=CJFD&dbcode=CJFQ
[80] Cattafesta L N, Song Q, Williams D R, et al. Active control of flow-induced cavity oscillations[J]. Prog. Aerospace Sci., 2008, 44:479-502. DOI: 10.1016/j.paerosci.2008.07.002
[81] Cattafesta L N, Williams D R, Rowley C W, et al. Review of active control of flow-induced cavity resonance[R]. AIAA 2003-3567, 2003.
[82] Cattafesta L. Actuators for Active Flow Control[J]. Annu Rev Fluid Mech, 2011, 43(43):247-272. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1204.2491
[83] Long D F. Spatial structure of cavity pressure fluctuations at transonic speeds[J]. AIAA J, 2006, 44(9):1983-1992. DOI: 10.2514/1.5236
[84] Flaherty W, Reedy T M, Elliott G S, et al. Investigation of cavity flow using fast-response pressure-sensitive paint[J]. AIAA J, 2014, 52(11):2462-2470. DOI: 10.2514/1.J052864
[85] 冯强, 张洋, 崔晓春.弹舱对飞翼布局飞机气动特性影响及其控制[J].实验流体力学, 2013, 27(3):31-40. DOI: 10.3969/j.issn.1672-9897.2013.03.006 Feng Q, Zhang Y, Cui X C. Study on the effect of weapons bay on aerodynamic characteristics of flying wing aircraft and its control[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(3):31-40. DOI: 10.3969/j.issn.1672-9897.2013.03.006
[86] Thiemann C L, Milne G J, Vakili A D. An experimental investigation of supersonic cavity flow control with vertical cylinders[R]. AIAA 2013-3173, 2013. http://www.researchgate.net/publication/269049590_An_Experimental_Investigation_of_Supersonic_Cavity_Flow_Control_with_Vertical_Cylinders
[87] Illy H, Jacquin L, Geffroy P. Observation on the passive control of flow oscillation over a cavity in a transonic regime by means of a spanwise cylinder[R]. AIAA 2008-3774, 2008.
[88] Dudley J G, Ukeiley L. Suppression of fluctuating surface pressures in a supersonic cavity flow[R]. AIAA 2010-4974, 2010. http://www.researchgate.net/publication/268483009_Suppression_of_Fluctuating_Surface_Pressures_in_a_Supersonic_Cavity_Flow
[89] Zhang X, Chen X X, Rona A, et al. Attenuation of cavity flow oscillation through leading edge flow control[J]. J Sound Vib, 1999, 221(1):23-47. DOI: 10.1006/jsvi.1998.2012
[90] Pereira J C F, Sousa J M M. Influence of impingement edge geometry on cavity flow oscillations[J]. AIAA J, 1994, 32(8):1737-1740. DOI: 10.2514/3.12168
[91] 吴继飞, 陶洋, 范召林, 等.后缘修型对空腔流场特性影响分析[J].空气动力学学报, 2010, 28(2):197-202. DOI: 10.3969/j.issn.0258-1825.2010.02.012 Wu J F, Tao Y, Fan Z L, et al. Analysis of the effect of the modification at the trailing edge on cavity flow characteristics[J]. Acta Aerodynamica Sinica, 2010, 28(2):197-202. DOI: 10.3969/j.issn.0258-1825.2010.02.012
[92] Gautam T, Lovejeet G, Vaidyanathan A. Experimental study of supersonic flow over cavity with aft Wall offset and cavity floor injection[J]. Aerosp Sci Technol, 2017, 70:211-232. DOI: 10.1016/j.ast.2017.07.024
[93] Wilcox F J Passive venting system for modifying cavity flowfields at supersonic speeds[J]. AIAA J, 1988, 26(3):374-376. DOI: 10.2514/3.9902
[94] Stallings R. Effect of passive venting on static pressure distributions in cavities at subsonic and transonic speeds[R]. NASA Technical Memorandum 4549, 1994.
[95] Zhang J, Morishita E, Okunuki T, et al. Experimental and computational investigation of supersonic cavity flows[R]. AIAA 2001-1755, 2001. http://www.researchgate.net/publication/269218849_Experimental_and_computational_investigation_of_supersonic_cavity_flows
[96] Sahoo D, Annaswamy A, Alvi F. Microjets-based active control of store trajectory in a supersonic cavity using a low-order model[R]. AIAA 2005-3097, 2005.
[97] Sahoo D, Annaswamy A, Zhuang N, et al. Control of cavity tones in supersonic flow[R]. AIAA 2005-793, 2005. DOI: 10.2514/6.2005-793
[98] Bower W W, Kibens V, Cary A W, et al. High-frequency excitation active flow control for hight-speed weapon release (HIFEX)[R]. AIAA 2004-2513, 2004. http://www.researchgate.net/publication/268561111_High-Frequency_Excitation_Active_Flow_Control_for_High-Speed_Weapon_Release_HIFEX
[99] George B, Ukeiley L, Cattafesta L N, et al. Control of three-dimensional cavity flow using leading-edge slot blowing[R]. AIAA 2015-1059, 2015. DOI: 10.2514/6.2015-1059
[100] Thangamani V, Kurian J Control of cavity oscillations in a supersonic flow by microjet injection[J]. J Aircraft, 2013, 50(4):1305-1308. DOI: 10.2514/1.C032003
[101] 王一丁, 郭亮, 童明波, 等.高速飞行器空腔脉动压力主动控制与非线性数值模拟[J].航空学报, 2015, 36(1):213-222. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501017 Wang Y D, Guo L, Tong M B, et al. Active control and nonlinear numerical simulation for oscillating pressure of high-speed aircraft cavity[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):213-222. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501017
[102] Ali M Y, Solomon J T, Gustavsson J, et al. Control of resonant flow inside a supersonic cavity using high bandwidth pulsed micro-actuators[R]. AIAA 2010-1198, 2010. http://www.researchgate.net/publication/269051079_control_of_resonant_flow_inside_a_supersonic_cavity_using_high_bandwidth_micro-actuators
[103] 吴继飞, 罗新福, 徐来武, 等.活塞式合成射流技术及其应用研究[J].实验流体力学, 2014, 28(6):61-65. http://www.syltlx.com/CN/abstract/abstract10791.shtml Wu J F, Luo X F, Xu L W, et al. Investigation on piston-typed synthetic jet technology and its application[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6):61-65. http://www.syltlx.com/CN/abstract/abstract10791.shtml
[104] 罗柏华, 胡章伟, 戴昌晖.声激励抑制空腔流激振荡的实验研究[J].南京航空航天大学学报, 1999, 31(1):1-5. DOI: 10.3969/j.issn.1005-2615.1999.01.001 Luo B H, Hu Z W and Dai C H. Experimental study on suppression of cavity flow oscillations by means of acoustic excitation[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1999, 31(1):1-5. DOI: 10.3969/j.issn.1005-2615.1999.01.001
[105] Chan S, Zhang X, Gabriel S. The attenuation of cavity tones using plasma actuators[R]. AIAA 2005-2802, 2005. http://www.researchgate.net/publication/268582149_The_Attenuation_of_Cavity_Tones_Using_Plasma_Actuators
[106] Webb N, Samimy M. Control of supersonic cavity flow using plasma actuators[J]. AIAA, 2017, 55(60):1-10. DOI: 10.2514/1.J055720
[107] Williams D R, Rowley C W. Recent progress in closed-loop control of cavity tones[R]. AIAA 2006-712, 2006. DOI: 10.2514/6.2006-712
[108] Williams D R, Cornelius D, Rowley C W. Closed-loop control of linear supersonic cavity tones[R]. AIAA 2007-4226, 2007. http://www.researchgate.net/publication/255583442_Closed-Loop_Control_of_Linear_Supersonic_Cavity_Tones
[109] Kim K, Debiasi M, Schultz R, et al. Dynamic compensation of a syntheitic jetlike actuator for closed-loop cavity flow control[J]. AIAA J, 2008, 46(1):232-240. DOI: 10.2514/1.30095
[110] Illingworth S J, Morgans A S, Rowley C W. Feedback control of cavity flow oscillations using simple linear models[J]. J Fluid Mech, 2012, 709(4):223-248. http://www.ams.org/mathscinet-getitem?mr=2989175
[111] Cattafesta L N, Shukla D, Garg S, et al. Development of an adaptive weapons-bay suppression system[R]. AIAA 1999-1901. 1999. DOI: 10.2514/6.1999-1901
[112] 张征宇, 王显圣, 黄旭辉, 等.高速复杂流动结构的视频测量[J].航空学报, 2017, 38(8):120989. http://d.old.wanfangdata.com.cn/Periodical/hkxb201708003 Zhang Z Y, Wang X S, Huang X H, et al. Videogrammetry measurement for high-speed complex flow structure[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8):120989. http://d.old.wanfangdata.com.cn/Periodical/hkxb201708003
[113] 周方奇, 杨党国, 王显圣, 等.前缘直板绕流对高速空腔的降噪效果分析[J].航空学报, 2018, 39(6):21812. Zhou F Q, Yang D G, Wang X S, et al. The effect of leading edge plate on high speed cavity noise controlling[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):21812.
-
期刊类型引用(1)
1. 朱新新,李泽禹,赵文峰,王辉,杨凯,杨庆涛. 水卡量热计的流热耦合模拟研究及试验分析. 实验流体力学. 2022(06): 83-88 . 本站查看
其他类型引用(1)