高超声速风洞连续变动压舵面颤振试验

季辰, 赵玲, 朱剑, 刘子强, 李锋

季辰, 赵玲, 朱剑, 刘子强, 李锋. 高超声速风洞连续变动压舵面颤振试验[J]. 实验流体力学, 2017, 31(6): 37-44. DOI: 10.11729/syltlx20170088
引用本文: 季辰, 赵玲, 朱剑, 刘子强, 李锋. 高超声速风洞连续变动压舵面颤振试验[J]. 实验流体力学, 2017, 31(6): 37-44. DOI: 10.11729/syltlx20170088
Ji Chen, Zhao Ling, Zhu Jian, Liu Ziqiang, Li Feng. Hypersonic wind tunnel flutter test research on rudder models by continuously varying dynamic pressure[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 37-44. DOI: 10.11729/syltlx20170088
Citation: Ji Chen, Zhao Ling, Zhu Jian, Liu Ziqiang, Li Feng. Hypersonic wind tunnel flutter test research on rudder models by continuously varying dynamic pressure[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 37-44. DOI: 10.11729/syltlx20170088

高超声速风洞连续变动压舵面颤振试验

基金项目: 

国家自然科学基金项目 11702285

详细信息
    作者简介:

    季辰(1982-), 男, 江苏南通人, 高级工程师。研究方向:气动弹性试验。通信地址:北京市7201信箱16分箱(100074)。E-mail:jichen167@sina.com

    通讯作者:

    季辰, E-mail: jichen167@sina.com

  • 中图分类号: V211.74;V215.3+4

Hypersonic wind tunnel flutter test research on rudder models by continuously varying dynamic pressure

  • 摘要: 为了研究舵、翼面高超声速颤振特性,中国航天空气动力技术研究院建立了高超声速风洞连续变动压颤振试验技术。对具有相同结构动力学和气动特性的舵面模型进行颤振试验,试验马赫数为4.95和5.95。试验中缓慢连续增加试验动压直至颤振发生,并由此获得颤振临界参数;采用短时傅里叶变换时频域分析法研究了试验中模型频率随动压变化的耦合特性,分析表明该模型在试验条件下发生了经典弯扭耦合颤振。试验中还采用亚临界试验数据对颤振余度法和阻尼外推法2种颤振边界预测技术进行了研究,2种方法在高超声速颤振试验中都显示了良好的预测精度。研究还表明,动压增加的速率对颤振边界的预测精度影响较小。采用红外热成像技术对模型的气动加热进行了研究,温度场测量显示舵面最高温度出现在舵根部前缘位置,舵前缘和舵面斜面中后部温度也较高;舵轴裸露在流场中的部分由于反射板附面层的影响其气动加热问题并不严重。
    Abstract: In order to study the hypersonic flutter behavior of rudder models, a hypersonic wind tunnel flutter test technique by continuously varying dynamic pressure was developed and experimentally studied in China Academy of Aerospace Aerodynamics. The models with the same structural and aerodynamic design were tested at Mach number 4.95 and 5.95. The flutter critical parameters were obtained by slowly increasing the dynamic pressure until flutter onset. The short-time-fourier-transform time-frequency domain analysis method was used to study the frequency coupling characteristics. The analysis shows that it is the classic flutter that the bending and torsion mode couples as the dynamic pressure increases. Based on the structural dynamic parameter identification method, the damping ratio extrapolation method and the flutter margin method were used to predict the flutter critical parameters with the subcritical data. Both methods show a good prediction accuracy. The results also indicate that the rate of increase of dynamic pressure has small effect on the prediction of the flutter boundary. The temperature field measurements show that the maximum temperature of the model appears at the leading edge of the wing root. The temperatures of the leading edge and the rear part of the slope of the rudder are also relatively high. The temperature of the leading edge of the rudder shaft exposed to the flow field is not high, which might be due to the influence of the reflector surface boundary layer.
  • 图  1   数据采集系统

    Fig.  1   Data acquisition system

    图  2   红外热像仪

    Fig.  2   Infrared thermal imager

    图  3   计算模态振型

    Fig.  3   Calculation mode shapes

    图  4   模型纹影图

    Fig.  4   Schlieren photograph of the model

    图  5   F5模型高超颤振试验(Ma=4.95)

    Fig.  5   F5 hypersonic flutter test (Ma=4.95)

    图  6   F6模型高超颤振试验(Ma=5.95)

    Fig.  6   F6 hypersonic flutter test (Ma=5.95)

    图  7   时频谱图(F5, Ma=4.95)

    Fig.  7   Time-frequency spectrum (F5, Ma=4.95)

    图  8   时频谱图(F6, Ma=5.95)

    Fig.  8   Time-frequency spectrum (F6, Ma=5.95)

    图  9   颤振余度法(F5模型,Ma=4.95)

    Fig.  9   Flutter margin method (F5, Ma=4.95)

    图  10   颤振余度法(F6模型,Ma=5.95)

    Fig.  10   Flutter margin method (F6, Ma=5.95)

    图  11   阻尼比外插颤振边界(F5模型,Ma=4.95)

    Fig.  11   Damping ratio extrapolation (F5, Ma=4.95)

    图  12   阻尼比外插颤振边界(F6模型,Ma=5.95)

    Fig.  12   Damping ratio extrapolation (F6, Ma=5.95)

    图  13   颤振发展速率

    Fig.  13   Rate of flutter development

    图  14   动压增加速率

    Fig.  14   Rate of dynamic pressure increase

    图  15   动压增速与颤振发展速率

    Fig.  15   KFM vs Kq plot

    图  16   F5模型表面温度分布(Ma=4.95)

    Fig.  16   Temperature distribution of model F5 (Ma=4.95)

    图  17   F6模型表面温度分布(Ma=5.95)

    Fig.  17   Temperature distribution of model F6 (Ma=5.95)

    图  18   F5模型表面温度随时间变化曲线

    Fig.  18   The surface temperature of model F5 versus time

    图  19   F5模型表面温度随时间变化曲线

    Fig.  19   The surface temperature of model F5 versus time

    表  1   模型模态参数

    Table  1   Mode parameters

    Frequency/Hz Frequency ratio Damping ratio/(%)
    f1 f2 f2/f1 ξ1 ξ2
    FEM 32.3 55.8 1.73 -- --
    GVT F5 33.5 55.7 1.66 0.31 0.41
    GVT F6 32.1 54.2 1.69 0.33 0.32
    下载: 导出CSV

    表  2   模型颤振参数

    Table  2   Flutter parameters

    Model Mach number qfm
    /(104Pa)
    ρ
    /(kg·m-3)
    ff/Hz Tt/K
    F5 4.95 4.372 0.1392 40.2 378.2
    F6 5.95 4.412 0.1059 39.1 477.3
    下载: 导出CSV

    表  3   不同方法得到的颤振动压

    Table  3   Comparison of flutter dynamic pressures

    Model Measured Flutter marginfunction Damping ratio extrapolation
    qfm/(104Pa) qff/(104Pa) δ/% qfd/(104Pa) δ/%
    F5 4.372 4.241 -3.0 4.261 -2.5
    F6 4.412 4.305 -2.4 4.352 -1.4
    下载: 导出CSV

    表  4   颤振动压增速影响

    Table  4   Influence of the dynamic-pressure-increasing rate

    Ma Kq
    /(Pa·s-1)
    KFM
    /(s-4·Pa-1)
    Model
    4.95 145 57617 F5-1
    4.95 767 58442 F5
    4.95 2393 55428 F5-2
    下载: 导出CSV
  • [1]

    Garrick I E, Cunningham H J. Problems and developments inaerothermoelasticity[C]//Proceeding of Symposium on Aerothermoelasticity, ASD-TR-61-645, 1962.

    [2]

    Doggett R V Jr. An observation on the pictorial representation of aeroservothermoelasticity[R]. NASA-TM-104058, 1991.

    [3]

    Terry M H. Aeroelasticity research at wright-patterson air force base (Wright Field) from 1953-1993[J]. Journal of Aircraft, 2003, 40(5):813-819. DOI: 10.2514/2.6872

    [4]

    Frederick W G. Flutter investigation of models having the planform of the northamerican X-15 airplane wing over a range of Mach number from 0.56 to 7.3[R]. NASA-TM-X-460, 1961.

    [5]

    Homer G M, Robert W M. Flutter tests of some simple models at a Mach number of 7.2 in helium flow[R]. NASA MEMO 4-8-59L, 1959. http://www.researchgate.net/publication/23912163_Flutter_Tests_of_Some_Simple_Models_at_a_Mach_Number_of_7.2_in_Helium_Flow

    [6]

    Robert C G. Effects of leading-edge bluntness on flutter characteristics of some square-planform double-wedge airfoils at a Mach number of 15.4[R]. NASA-TN-D-1487, 1962.

    [7]

    Robert C G. Effects of leading-edge sweep on flutter characteristics of some delta-planform surfaces at a Mach number of 15.4[R]. NASA-TN-D-2360, 1964.

    [8] 冯明溪, 白葵. 舵面颤振试验[C]//第五届全国流体弹性力学学术会议论文集. 1996.

    Feng M X, Bai K. Rudder flutter test[C]//Proceedings of the 5th National Symposium on Aeroelasticity. 1996.

    [9] 白葵, 冯明溪, 付光明. 超音速有迎角舵面颤振实验[C]//第七届全国空气弹性学术交流会论文集, 2001. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKQ200110003006.htm

    Bai K, Feng M X, Fu G M. Experimental study of rudder flutter with angle of attack at supersonic speed[C]//Proceedings of the 7th National Symposium on Aeroelasticity, 2001. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKQ200110003006.htm

    [10] 杨炳渊, 宋伟力.舵模型风洞颤振试验中亚临界技术的应用研究[J].上海航天, 2003, 20(2):18-21. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKQ200110003005.htm

    Yang B Y, Song W L. Application of subcritical technology in wind tunnel flutter experiment for rudder model[J]. Aerospace Shanghai, 2003, 20(2):18-21. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKQ200110003005.htm

    [11] 冉景洪, 季辰, 刘子强, 等.跨声速风洞颤振试验模型激振与数据处理方法研究[J].实验流体力学, 2009, 23(4):87-91, 97. http://www.syltlx.com/CN/abstract/abstract9767.shtml

    Ran J H, Ji C, Liu Z Q, et al. Research of data process methods and model excitation for transonic flutter experiments in wind tunnel[J]. J Exp Fluid Mech, 2009, 23(4):87-91, 97. http://www.syltlx.com/CN/abstract/abstract9767.shtml

    [12] 季辰, 冉景洪, 刘子强.亚跨风洞中舵面亚临界颤振试验[J].实验流体力学, 2011, 25(3):37-40. http://www.syltlx.com/CN/abstract/abstract10655.shtml

    Ji C, Ran J H, Liu Z Q. Flutter test of rudder in sub-tran-supersonic wind tunnel using subcritical response methods[J]. J Exp Fluid Mech, 2011, 25(3):37-40. http://www.syltlx.com/CN/abstract/abstract10655.shtml

    [13] 钱卫, 何林祥, 王文卓, 等. 1. 2×1. 2m跨音速风洞模型颤振试验技术研究[C]//第六届全国流体弹性力学会议文集, 珠海, 1998. http://d.wanfangdata.com.cn/Conference_185643.aspx

    Qian W, He L X, Wang W Z, et al. 1.2×1.2m transonic wind tunnel model flutter test technology research[C]//Proceedings of the 6th National Symposium on Aeroelasticity, Zhuhai, 1998. http://d.wanfangdata.com.cn/Conference_185643.aspx

    [14] 路波, 杨兴华, 罗建国, 等.跨声速风洞全模颤振试验悬浮支撑系统[J].实验流体力学, 2009, 23(3):90-94, 103. http://www.syltlx.com/CN/abstract/abstract9746.shtml

    Lu B, Yang X H, Luo J G, et al. Floating suspension system for full model flutter test in transonic wind tunnel[J]. J Exp Fluid Mech, 2009, 23(3):90-94, 103. http://www.syltlx.com/CN/abstract/abstract9746.shtml

    [15] 郭洪涛, 路波, 余立, 等.某战斗机高速全模颤振风洞试验研究[J].航空学报, 2012, 33(10):1765-1771. http://www.cqvip.com/QK/91925X/201210/43551794.html

    Guo H T, Lu B, Yu L, et al. Investigation on full-model flutter test of a fighter plane in high-speed wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1765-1771. http://www.cqvip.com/QK/91925X/201210/43551794.html

    [16] 郭洪涛, 闫昱, 余立, 等.高速风洞连续变速压颤振试验技术研究[J].实验流体力学, 2015, 29(5):72-77. http://www.syltlx.com/CN/abstract/abstract10878.shtml

    Guo H T, Yan Y, Yu L, et al. Research on flutter test technology of continuously adjusting dynamical pressure in high-speed wind tunnel[J]. J Exp Fluid Mech, 2015, 29(5):72-77. http://www.syltlx.com/CN/abstract/abstract10878.shtml

    [17] 闫昱, 余立, 吕彬彬, 等.超声速颤振风洞试验技术研究[J].实验流体力学, 2016, 30(6):76-80. http://www.syltlx.com/CN/abstract/abstract10984.shtml

    Yan Y, Yu L, Lyu B B, et al. Research on flutter test technique in supersonic wind tunnel[J]. J Exp Fluid Mech, 2016, 30(6):76-80. http://www.syltlx.com/CN/abstract/abstract10984.shtml

    [18] 季辰, 李锋, 刘子强.高超声速风洞颤振试验技术研究[J].实验流体力学, 2015, 29(4):75-80. http://www.syltlx.com/CN/abstract/abstract10863.shtml

    Ji C, Li F, Liu Z Q. Research on flutter test technique in hypersonic wind tunnel[J]. J Exp Fluid Mech, 2015, 29(4):75-80. http://www.syltlx.com/CN/abstract/abstract10863.shtml

    [19] 陈丁, 吕计男, 季辰, 等.双目视觉技术在高超声速颤振风洞试验中的应用[J].实验力学, 2015, 30(3):381-387. DOI: 10.7520/1001-4888-14-192

    Chen D, Lyu J N, Ji C, et al. Application of binocular vision measurement in hypersonic flutter wind tunnel experiment[J]. Journal of Experimental Mechanics, 2015, 30(3):381-387. DOI: 10.7520/1001-4888-14-192

    [20]

    Oppenheim A V, Shafer R W. Digital signal processing[M]. Upper Saddle River, NJ:Prentice-Hall, Inc. 1975.

    [21]

    Cooper J E. Parameter estimation methods for flight flutter testing[R]. CP-566, AGARD, 1995. https://www.researchgate.net/publication/292241846_Parameter_estimation_methods_for_flight_flutter_testing

图(19)  /  表(4)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  105
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-02
  • 修回日期:  2017-08-30
  • 刊出日期:  2017-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭