Research on method for evaluating the thermal protective performance of non-catalysis material in non-equilibrium flow
-
摘要: 针对电弧风洞试验条件下非催化壁防热材料在非平衡流场中存在的防热性能"欠考核"问题,提出了有效考核方法。以典型陶瓷基复合材料尖劈外形试件为例,采用CFD数值模拟与试验状态调试相结合的方法,对典型电弧风洞试验条件下完全催化壁和非催化壁材料的热流进行了数值模拟,并结合热流实测结果,确定了风洞试验状态并完成了试验,实现了对该类热防护材料防热性能的有效考核,为非催化壁材料防热性能试验"欠考核"问题提供了解决途径。Abstract: In this paper, an effective wind tunnel test method is presented for evaluating the thermal protective performance of the non-catalysis material. The method is proved to be reasonable by iterating the results between CFD simulation and the wind tunnel operating parameter, taking a typical CMC(ceramic matrix composite) wedge-edge specimen for example. The operating parameters of the arc tunnel was determined by comparing the simulation results of the non-catalysis and the full-catalysis assumption. The wind tunnel test results indicate that the test on the specimen was performed as expected, which may be helpful to solve the 'under-evaluating' problem for the non-catalysis material in the non-equilibrium flow.
-
-
表 1 目标试验状态
Table 1 The expected test condition
状态 目标热流/(W·m-2) 目标焓值/(J·kg-1) 1 1.7×106 16×106 表 2 试验状态调试参数
Table 2 The operating parameters of actual test
状态 弧室压力/Pa 总焓/(J·kg-1) 1 2.65×105 18.5×106 表 3 CFD模拟喷管出口参数
Table 3 Tunnel exit parameters of CFD simulation
Ma 静温T/K 静压p/Pa CO CN CN2 CO2 CNO CNO+ Ce 5.69 1545.14 710.05 0.1436 0.2438 0.6126 0 0 0 0 注:Ci为7组分空气化学模型中各组分的质量比数 表 4 试验测试与目标热流
Table 4 Comparison of heat flux between test and expected data
完全催化壁(CFD)/(W·m-2) 完全非催化壁(CFD)/(W·m-2) 实测热流/(W·m-2) 目标热流/(W·m-2) 2.718×106 1.603×106 2.57×106 1.7×106 -
[1] Carden W H. Experimental heat transfer to hemispheres in nonequilibriun dissociated hypersonic flow with surface catalysis and second-order effects[R]. AIAA-66-3, 1966.
[2] Barbato M, Giordano D, Muylaert J, et al. Comparison of catalytic wall conditions for hypersonic flow[J]. Journal of Thermophysics and Heat Transfer, 1996, 33(5):620-62. http://cat.inist.fr/?aModele=afficheN&cpsidt=10142526
[3] Gnoffo P A, Inger G R. Analytic corrections to computational heating predictions accounting for changes in surface catalysis[J]. Journal of Spacecraft and Rockets, 1998, 35(4):417-423. DOI: 10.2514/2.3356
[4] Scott C D, Stephen M. D. Catalytic recombination and space shuttle heating[R]. AIAA-82-0841, 1982.
[5] Barbato M, Giordano D, Muylaert J, et al. Comparison of catalytic wall conditions for hypersonic flow[J]. Journal of Thermophysics and Heat Transfer, 1996, 33(5):620-62. https://infoscience.epfl.ch/record/109287
[6] Filippis F D, Savino R, Martucci A. Numerical-experimental correlation of stagnation point heat flux in high enthalpy hypersonic wind tunnel[R]. AIAA-2005-3277, 2005.
[7] George R I. Nonequilibrium boundary-layer effects on the aerodynamic heating of hypersonic waverider vehicles[J]. Journal of Thermophysics and Heat Transfer, 1995, 9(4):595-604. DOI: 10.2514/3.713
[8] Scott C D. Effects of nonequilibrium and catalysis on shuttle heat transfer[R]. AIAA-83-1485, 1983.
[9] Park C. Assessment of two-temperature kinetic model for ionizing air[R]. AIAA-87-1574, 1987.
[10] Park C. Two-temperature interpretation of dissociation rate data for N2 and O2[R]. AIAA-88-0458, 1988.
[11] Liou M S. Ten years in the making-AUSM-family[R]. AIAA-2001-2521, 2001.
[12] Liou M S. A further development of the AUSM+ scheme towards robust and accurate solutions for all speeds[R]. AIAA-2003-4116, 2003.