非催化壁材料在非平衡流场条件下的热考核试验方法研究

于明星, 白书欣, 徐晓亮, 曹占伟

于明星, 白书欣, 徐晓亮, 曹占伟. 非催化壁材料在非平衡流场条件下的热考核试验方法研究[J]. 实验流体力学, 2017, 31(4): 84-89. DOI: 10.11729/syltlx20170084
引用本文: 于明星, 白书欣, 徐晓亮, 曹占伟. 非催化壁材料在非平衡流场条件下的热考核试验方法研究[J]. 实验流体力学, 2017, 31(4): 84-89. DOI: 10.11729/syltlx20170084
Yu Mingxing, Bai Shuxin, Xu Xiaoliang, Cao Zhanwei. Research on method for evaluating the thermal protective performance of non-catalysis material in non-equilibrium flow[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 84-89. DOI: 10.11729/syltlx20170084
Citation: Yu Mingxing, Bai Shuxin, Xu Xiaoliang, Cao Zhanwei. Research on method for evaluating the thermal protective performance of non-catalysis material in non-equilibrium flow[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 84-89. DOI: 10.11729/syltlx20170084

非催化壁材料在非平衡流场条件下的热考核试验方法研究

基金项目: 

国家自然科学基金项目 51506008

详细信息
    作者简介:

    于明星(1969-), 男, 山东济宁人, 研究员。研究方向:高超声速热防护。通信地址:北京市9200信箱89分箱一室(100076)。E-mail:ymxchyh@sohu.com

    通讯作者:

    于明星, E-mail:ymxchyh@sohu.com

  • 中图分类号: V211.74

Research on method for evaluating the thermal protective performance of non-catalysis material in non-equilibrium flow

  • 摘要: 针对电弧风洞试验条件下非催化壁防热材料在非平衡流场中存在的防热性能"欠考核"问题,提出了有效考核方法。以典型陶瓷基复合材料尖劈外形试件为例,采用CFD数值模拟与试验状态调试相结合的方法,对典型电弧风洞试验条件下完全催化壁和非催化壁材料的热流进行了数值模拟,并结合热流实测结果,确定了风洞试验状态并完成了试验,实现了对该类热防护材料防热性能的有效考核,为非催化壁材料防热性能试验"欠考核"问题提供了解决途径。
    Abstract: In this paper, an effective wind tunnel test method is presented for evaluating the thermal protective performance of the non-catalysis material. The method is proved to be reasonable by iterating the results between CFD simulation and the wind tunnel operating parameter, taking a typical CMC(ceramic matrix composite) wedge-edge specimen for example. The operating parameters of the arc tunnel was determined by comparing the simulation results of the non-catalysis and the full-catalysis assumption. The wind tunnel test results indicate that the test on the specimen was performed as expected, which may be helpful to solve the 'under-evaluating' problem for the non-catalysis material in the non-equilibrium flow.
  • 图  1   非催化壁材料防热性能考核试验参数设计流程

    Fig.  1   Test steps for evaluating the thermal protective performance of non-catalysis material

    图  2   尖劈前缘试验件示意图

    Fig.  2   The wedge-edge specimen

    图  3   喷管对称面流场参数分布

    Fig.  3   Flow parameters distribution on the plane of symmetry of the nozzle

    图  4   喷管出口参数

    Fig.  4   Flow parameters of the nozzle outlet

    图  5   前缘试验件绕流对称面流场分布

    Fig.  5   Flowparameters distribution on the plane of symmetry of the wedge-edge specimen

    图  6   前缘试验件表面热流和压力分布(完全催化条件)

    Fig.  6   Heat flux andpressure distribution of the wedge-edge specimen (Full catalysis)

    图  7   试验件表面热流分布

    Fig.  7   Heat flux distribution of CFD simulation results with full-catalysis and non-catalysis assumption

    图  8   烧蚀试验前、后试件形貌

    Fig.  8   Appearance of specimen before and after ablation test

    表  1   目标试验状态

    Table  1   The expected test condition

    状态 目标热流/(W·m-2) 目标焓值/(J·kg-1)
    1 1.7×106 16×106
    下载: 导出CSV

    表  2   试验状态调试参数

    Table  2   The operating parameters of actual test

    状态 弧室压力/Pa 总焓/(J·kg-1)
    1 2.65×105 18.5×106
    下载: 导出CSV

    表  3   CFD模拟喷管出口参数

    Table  3   Tunnel exit parameters of CFD simulation

    Ma 静温T/K 静压p/Pa CO CN CN2 CO2 CNO CNO+ Ce
    5.69 1545.14 710.05 0.1436 0.2438 0.6126 0 0 0 0
    注:Ci为7组分空气化学模型中各组分的质量比数
    下载: 导出CSV

    表  4   试验测试与目标热流

    Table  4   Comparison of heat flux between test and expected data

    完全催化壁(CFD)/(W·m-2) 完全非催化壁(CFD)/(W·m-2) 实测热流/(W·m-2) 目标热流/(W·m-2)
    2.718×106 1.603×106 2.57×106 1.7×106
    下载: 导出CSV
  • [1]

    Carden W H. Experimental heat transfer to hemispheres in nonequilibriun dissociated hypersonic flow with surface catalysis and second-order effects[R]. AIAA-66-3, 1966.

    [2]

    Barbato M, Giordano D, Muylaert J, et al. Comparison of catalytic wall conditions for hypersonic flow[J]. Journal of Thermophysics and Heat Transfer, 1996, 33(5):620-62. http://cat.inist.fr/?aModele=afficheN&cpsidt=10142526

    [3]

    Gnoffo P A, Inger G R. Analytic corrections to computational heating predictions accounting for changes in surface catalysis[J]. Journal of Spacecraft and Rockets, 1998, 35(4):417-423. DOI: 10.2514/2.3356

    [4]

    Scott C D, Stephen M. D. Catalytic recombination and space shuttle heating[R]. AIAA-82-0841, 1982.

    [5]

    Barbato M, Giordano D, Muylaert J, et al. Comparison of catalytic wall conditions for hypersonic flow[J]. Journal of Thermophysics and Heat Transfer, 1996, 33(5):620-62. https://infoscience.epfl.ch/record/109287

    [6]

    Filippis F D, Savino R, Martucci A. Numerical-experimental correlation of stagnation point heat flux in high enthalpy hypersonic wind tunnel[R]. AIAA-2005-3277, 2005.

    [7]

    George R I. Nonequilibrium boundary-layer effects on the aerodynamic heating of hypersonic waverider vehicles[J]. Journal of Thermophysics and Heat Transfer, 1995, 9(4):595-604. DOI: 10.2514/3.713

    [8]

    Scott C D. Effects of nonequilibrium and catalysis on shuttle heat transfer[R]. AIAA-83-1485, 1983.

    [9]

    Park C. Assessment of two-temperature kinetic model for ionizing air[R]. AIAA-87-1574, 1987.

    [10]

    Park C. Two-temperature interpretation of dissociation rate data for N2 and O2[R]. AIAA-88-0458, 1988.

    [11]

    Liou M S. Ten years in the making-AUSM-family[R]. AIAA-2001-2521, 2001.

    [12]

    Liou M S. A further development of the AUSM+ scheme towards robust and accurate solutions for all speeds[R]. AIAA-2003-4116, 2003.

图(8)  /  表(4)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  103
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-19
  • 修回日期:  2017-07-18
  • 刊出日期:  2017-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭