微小通道沿程压力测量方法研究

Research of the measurement method for the pressure distribution along the micro/mini-channel

  • 摘要: 设计并搭建了一套微小通道沿程压力的测量系统,包括PMMA通道和压力方腔、微应变传感器及多通道应变仪等。利用注射泵的推进方法提供微通道静压,采用FCO510型高精度微差压计的测量值作为标准压力,通过多通道应变仪测量微通道方腔中各个应变片的应变值,从而建立标准压力和应变之间的标定函数。分别对3种微压芯片在80、70、60及50mL/min等4种不同流量下的压力分布进行了测量,压力分布具有良好的线性规律。不确定度分析表明压力误差的相对扩展不确定度范围为0.15%~6.82%,测量结果的有效性和可靠性较高。

     

    Abstract: In this study, a system was designed and built up for the pressure measurement along micro/mini-channel, which mainly includes micro/mini-channel and square pressure cavities on PMMA chip, micro-strain sensors and multi-channel strain instruments. The static pressure in micro/mini-channel was provided by the syringe pump, and the high precision pressure values measured by the micromanometer of FCO510 was employed as the standard pressure. The strain values from the strain sensors installed on the square pressure cavities were obtained by multi-channels strain gauge, and the calibration functions between the standard pressure and the strain were established. The pressure distributions of three kinds of micro pressure chips were measured under flow rates of 80, 70, 60 and 50mL/min, respectively. The pressures have good linear distribution.The uncertainty analysis indicates that the relative uncertainty of the pressure error is between 0.15% and 6.82%. The validity and reliability of pressure measurement are high.

     

/

返回文章
返回