基于翼尖涡物理特征的诱导阻力减阻机制实验研究

黄文涛, 向阳, 王笑, 刘洪, 顾定一

黄文涛, 向阳, 王笑, 刘洪, 顾定一. 基于翼尖涡物理特征的诱导阻力减阻机制实验研究[J]. 实验流体力学, 2017, 31(5): 53-59. DOI: 10.11729/syltlx20160194
引用本文: 黄文涛, 向阳, 王笑, 刘洪, 顾定一. 基于翼尖涡物理特征的诱导阻力减阻机制实验研究[J]. 实验流体力学, 2017, 31(5): 53-59. DOI: 10.11729/syltlx20160194
Huang Wentao, Xiang Yang, Wang Xiao, Liu Hong, Gu Dingyi. Experimental study on drag-reduction mechanisms based on the physical characteristic of tip vortex[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 53-59. DOI: 10.11729/syltlx20160194
Citation: Huang Wentao, Xiang Yang, Wang Xiao, Liu Hong, Gu Dingyi. Experimental study on drag-reduction mechanisms based on the physical characteristic of tip vortex[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 53-59. DOI: 10.11729/syltlx20160194

基于翼尖涡物理特征的诱导阻力减阻机制实验研究

基金项目: 

973计划项目"大型客机减阻机理和方法研究" 2014CB744802

详细信息
    作者简介:

    黄文涛(1985-), 男, 山东临沂人, 博士研究生。研究方向:非定常空气动力学。通信地址:上海市闵行区东川路800号上海交通大学航空航天学院2406室(200240)。E-mail:herosleeper2000@163.com

    通讯作者:

    刘洪, E-mail: hongliu@sjtu.edu.cn

  • 中图分类号: O355

Experimental study on drag-reduction mechanisms based on the physical characteristic of tip vortex

  • 摘要: 本文通过风洞实验研究了翼尖涡的物理特征以及诱导阻力的减阻机制。实验中利用3DPIV(三维粒子图像测速技术)技术得到了翼尖涡的物理特征,并基于本文提出并设计的翼尖气动力测量装置,得到了机翼翼尖处的诱导阻力。实验结果表明,机翼翼尖涡的无量纲环量会随机翼迎角及风速的增大而增大。翼尖涡无量纲环量的减小以及翼尖涡与机翼之间距离的增大都会引起诱导阻力的减小。具体而言,通过抑制翼尖涡的无量纲环量,增加翼尖涡与主机翼之间的距离,减小翼尖涡与机翼之间的相互作用,实现机翼翼尖诱导阻力的减阻。
    Abstract: The drag-reduction mechanisms based on the physical characteristic of the tip vortex are investigated through experiments in the wind tunnel. Through 3DPIV (3D Particle Image Velocimetry) experiments, the physical characteristic of tip vortex is obtained, and the induced drag of wing is calculated based on the aerodynamic force measurement setup of wingtip proposed in this paper. Experimental results show that the non-dimensional circulation of the tip vortex increases with the increasing angle of attack and the wind speed. Meanwhile, with the decrease of the non-dimension circulation of the tip vortex or the increase of the spacing between the wing and the tip vortex, the induced drag becomes smaller and smaller. Specifically, the induced drag reduction can be achieved by inhibiting the non-dimensional intensity of the tip vortex, which weakens the interaction between the main wing and the tip vortex.
  • 图  1   风洞实验装置示意图

    Fig.  1   Experimental setup in wind tunnel

    图  2   机翼模型的风洞安装示意图

    Fig.  2   Installation of wing model in the wind tunnel

    图  3   测力装置模型图

    Fig.  3   Model of force measuring system

    图  4   6°迎角下机翼尖涡云图

    Fig.  4   Contour of the tip vortex of wing with the angle of attack at 6°

    图  5   不同机翼迎角下的翼尖涡的瞬时速度场和涡量云图

    Fig.  5   Instantaneous velocity (arrows) and vorticity (color) fields of the tip vortex of wing with different angles of attack

    图  6   不同迎角对翼尖涡的无量纲环量的影响

    Fig.  6   Non-dimensional circulation of vortex structure on wingtip influenced by the angle of attack

    图  7   不同风速下的翼尖涡的瞬时速度场和涡量云图

    Fig.  7   Instantaneous velocity (arrows) and vorticity (color) fields of the tip vortex of the plate wing with different velocities

    图  8   不同雷诺数对翼尖涡的无量纲环量的影响

    Fig.  8   Non-dimensional circulation of vortex structure on wingtip influenced by the Reynolds number

    图  9   迎角对翼尖诱导阻力的影响

    Fig.  9   Induced drag of wingtip influenced by the angle of attack

    图  10   风速对翼尖诱导阻力的影响

    Fig.  10   Induced drag of wingtip influenced by airflow speed

    图  11   翼尖涡无量纲环量对诱导阻力系数的影响

    Fig.  11   Coefficient of induced drag of wingtip influenced by non-dimensional circulation

    图  12   翼尖涡与主机翼间的距离对诱导阻力系数的影响

    Fig.  12   Coefficient of induced drag of wingtip influenced by non-dimensional distance between the vortex core and the airfoil

  • [1] 马汉东, 崔尔杰.大型飞机阻力预示与减阻研究[J].力学与实践, 2007, 29(2):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-LXYS200702001.htm

    Ma H D, Cui E J. Drag prediction and reduction for civil transportation aircraft[J]. Mechanics in Engineering, 2007, 29(2):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-LXYS200702001.htm

    [2]

    Birch D, Lee T. Structure and induced drag of a tip vortex[J]. Journal of Aircraft, 2004, 41(5):1138-1145. DOI: 10.2514/1.2707

    [3]

    Devenport W J, Rife M C, Liapis S I, et al. The structure and development of a wing-tip vortex[J]. Journal of Fluid Mechanics, 1996, 312:67-106. DOI: 10.1017/S0022112096001929

    [4] 江永泉.翼梢小翼的空气动力机理[J].民用飞机设计与研究, 1993, (3):16-22. http://www.cqvip.com/qk/91315X/199303/1123823.html
    [5] 顾蕴松, 程克明, 郑新军.翼尖涡流场特性及其控制[J].空气动力学学报, 2008, 26(4):446-451. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200804006.htm

    Gu Y S, Cheng K M, Zheng X J. Flow field characteristics of wing tips vortex and its control[J]. Acta Aerodynamica Sinica, 2008, 26(4):446-451. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200804006.htm

    [6]

    Gatto A, Mattioni F, Friswell M I. Experimental investigation of bistable winglets to enhance wing lift takeoff capability[J]. Journal of Aircraft, 2009, 46(2):647-655. DOI: 10.2514/1.39614

    [7]

    Sun R M, Daichin. Experimental investigation on tip vortices and aerodynamics[J]. Theoretical and Applied Mechanics Letters, 2011, 1(3):1-6. http://www.sciencedirect.com/science/article/pii/S2095034915300489

    [8]

    Ashurst W T, Meiburg E. Three-dimensional shear layers via vortex dynamics[J]. J Fluid Mech, 1988, 189:87-116. DOI: 10.1017/S0022112088000928

    [9]

    Knio O M, Ghoniem A F. Numerical study of a 3-dimensional vortex method[J]. Journal of Computational Physics, 1990, 86(1):75-106. DOI: 10.1016/0021-9991(90)90092-F

    [10]

    Cai J. LES for wing tip vortex around an airfoil[D]. Texas:University of Texas, 2006:74-75.

    [11]

    Lee C S. Flow structure and scaling laws in lateral wing-tip blowing[J]. AIAA J, 1989, 27:1002-1007. DOI: 10.2514/3.10211

    [12]

    Lee C S, Tavella D. Flow structure of lateral wing-tip blowing[R]. AIAA-1986-1810, 1986.

    [13]

    Margaris P, Gursul I. Effect of steady blowing on wing tip flowfield[R]. AIAA-2004-2619, 2004.

    [14]

    Catalano F M, Ceron-Mufioz H D. Experimental analysis of the aerodynamic characteristics of adaptive multi-winglets[C]. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno:AIAA, 2005.

    [15]

    Falclio L, Gomes A A, Suleman A. Aero-structural design optimization of a morphing wingtip[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(10):1113-1124. DOI: 10.1177/1045389X11417652

    [16]

    Boiler C, Kuo C M. Demonstration of adaptive structure performance on modular micro airvehicle[C]. 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando:AIAA, 2010.

    [17]

    Kroo I. Drag due to lift concepts for prediction and reduction[J]. Annual Review of Fluid Mechanics, 2001, 33:587-617. DOI: 10.1146/annurev.fluid.33.1.587

    [18]

    Chao D D, Dam C P. Wing drag prediction and de-composition[R]. AIAA-2004-5074, 2004.

    [19]

    Ringuette M J, Milano M, Gharib M. Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates[J]. Journal of Fluid Mechanics, 2007, 581:453-468. DOI: 10.1017/S0022112007005976

    [20]

    Dacles-Mariani J, Kwak D, Zilliac G G. On numerical errors and turbulence modeling in tip vortex flow prediction[J]. International Journal for Numerical Methods in Fluids, 1999, 30:65-82. DOI: 10.1002/(ISSN)1097-0363

    [21]

    Takahashi R K, Mcalister P K W. Study of a wing-tip vortex using laser velocimetry[R]. NASA-Technical Memorandum-88343, Washington, D. C.:NASA, 1987.

    [22]

    Li J, Cai J, Liu C. Large eddy simulation of wing tip vortex in the near field[R]. Mathematics Preprint Series. The University of Texas at Arlington, 2007.

    [23]

    Bailey S C C, Tavoularis S. Measurements of the velocity field of a wing-tip vortex, wandering in grid turbulence[J]. J Fluid Mech, 2008, 601:281-315. https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/measurements-of-the-velocity-field-of-a-wing-tip-vortex-wandering-in-grid-turbulence/1CDB8F761B0DBBE814A822BE1098B949

    [24]

    Prasad A K, Jensen K. Scheimpflug stereo camera for particle image velocimetry in liquid flows[J]. Appl Opt, 1995, 34:7092. DOI: 10.1364/AO.34.007092

    [25]

    Jardin T, Farcy A, David L. Three-dimensional effects in hovering flapping flight[J]. J Fluid Mech, 2012, 702:102-125. DOI: 10.1017/jfm.2012.163

  • 期刊类型引用(3)

    1. 白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 . 百度学术
    2. 温青,龙航,华旭刚,池俊豪,孙洪鑫. 宽高比5∶1矩形断面涡激振动锁定区间内涡激力展向相关性分析. 振动工程学报. 2023(02): 319-325 . 百度学术
    3. 白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 . 百度学术

    其他类型引用(2)

图(12)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  84
  • PDF下载量:  10
  • 被引次数: 5
出版历程
  • 收稿日期:  2016-12-10
  • 修回日期:  2017-08-22
  • 刊出日期:  2017-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭