Abstract:
This paper studies the bubble propelled motion of Pt-SiO
2 hollow Janus microspheres in H
2O
2 solutions (concentrations between 2% to 4%). Three typical stages have been observed in every period of the bubble growth-collapse, which are self-diffusiophoresis, bubble growth and bubble collapse. At the bubble collapse stage, the speed propelled by a microjet can reach tens of millimeter per second, and it is about 2 or 3 orders of magnitude higher than the speed in the other two stages. In the experiment, two scaling laws between the bubble radius and the elapsed time during the bubble growth stage are observed:
Rb~
t1/3 and
Rb~
t1/2. Because the bubble growing point at the Janus microsphere's Pt side deviates from the axisymmetric point, the trajectory of the Janus microsphere is nearly a circle.With the increase of the H
2O
2 concentrations, the speed of the Janus microspheres can be enhanced.This study not only quantifies the characteristic motion of Janus microspheres, but also provides valuable information for improving the speed and energy utilization of Janus micromotors in practical application.