Mid-infrared absorption combustion diagnostics for an ADN based thruster
-
摘要: ADN(二硝酰胺铵盐)基单组元绿色推进技术是空间推进领域的国际研究热点,目前国内外对ADN基推进剂分解和燃烧过程缺乏统一、完善的燃烧动力学机理,尤其欠缺对推力器内部燃烧过程和关键中间产物定量信息的实验研究。本文通过发展先进中红外光谱诊断技术(QCLAS),实时诊断ADN基推进剂分解、燃烧反应中的CO,N2O多种关键组分浓度、燃气温度等关键参数。推力器稳态点火测量结果验证了ADN推进剂催化分解和燃烧两步反应阶段理论研究,脉冲点火下组分浓度变化规律呈现与脉冲序列一致特性,验证了推力器正常工作的稳定性和可靠性。基于测量结果初步评估了ADN基推力器性能,特征速度达1130m/s,达到同类型肼推力器标准,验证了该绿色推力器良好的应用前景。
-
关键词:
- ADN基推力器 /
- 中红外量子级联激光吸收光谱 /
- 温度测量 /
- 浓度测量
Abstract: ADN monopropellant green space propulsion is perceived as a focus of the space propulsion research worldwide. Experimental study is in urgent requirement for understanding the combustion process in the ADN based thruster and for quantitative evaluation and optimization of the combustion stability and the thruster performance. In this paper, experiments were conducted to measure the concentration of the key intermediate products (CO, N2O) and the temperature of the combustion gas flow based on the mid-infrared quantum cascade laser absorption spectroscopy (QCLAS). Two main ignition modes of the 1 N ADN based thruster are studied: the steady-state firing and the pulse-mode firing over the injection pressure of 0.5~1.2MPa bar with catalytic bed length of 19 mm, corresponding to a current thruster prototype. It is found in the steady-state firing experiments that the whole process can be divided into the catalytic decomposition stage and the combustion stage, and the combustion kinetics mechanism of the monopropellant is experimentally demonstrated. Experiments for the pulse-mode firing show the variance of the measured multispecies concentration and temperature in consistence with the pulse trains, verifying the good performance of the thruster pulse-mode firing operation. -
-
图 1 ADN基推进剂分解、燃烧过程[17]
Fig. 1 Decomposition and combustion processes of ADN monopropellant
表 1 待测组分谱线光谱参数
Table 1 Spectroscopic line parameters for species concentration measurements
Species Wavelength
/cm-1Linestrength
S(296K)
/(cm-2·atm-1)Lower state
energy E″
/cm-1N2O 2192.48 8.39 469.91 N2O 2193.54 9.30 442.28 CO 2193.36 6.02 349.70 表 2 H2O测温谱线光谱参数
Table 2 Spectroscopic line parameters for H2O temperature measurements
Wavelength
/cm-1Linestrength S(296K)
/(cm-2·atm-1)Lower state energy
E″/cm-17185.597 0.0197 1045.058 7444.35+
7444.370.00112 1774.751
1806.670 -
[1] Gohardani A S, Stanojev J, Demaire A, et al. Green space propulsion: Opportunities and prospects[J]. Progress in Aerospace Sciences, 2014, 71: 128-149. DOI: 10.1016/j.paerosci.2014.08.001
[2] Kamal F, Yann B, Rachid B, et al. Application of ionic liquids to space propulsion[M]. Rijeka, Croatia: InTech, 2011: 447-466.
[3] Amrousse R, Hori K, Fetimi W, et al. HAN and ADN as liquid ionic monopropellants: thermal and catalytic decomposition processes[J]. Applied Catalysis B: Environmental, 2012. 127: 121-128. DOI: 10.1016/j.apcatb.2012.08.009
[4] Kappenstein C, Batonneau Y, Perianu E, et al. Non toxic ionic liquids as hydrazine substitutes. Comparison of physico-chemical properties and evaluation of ADN and HAN[C]//Proc of 2nd European Space Agency International Conference on Green Propellants for Space Propulsion (ESA SP-577), 2004.
[5] Bombelli V, Marée T, Caramelli F. Non-toxic liquid propellant selection method-a requirement oriented approach[C]. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, 2005.
[6] Anflo K, Crowe B. In-space demonstration of an ADN-based propulsion system[C]. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, 2011.
[7] Anflo K, Grönland T A, Wingborg N. Development and testing of ADN-based monopropellants in small rocket engines[C]. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, 2000.
[8] Anflo K, Grönland T A. Towards green propulsion for spacecraft with ADN-based monopropellants[C]. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, 2002.
[9] Anflo K, Mollerberg R. Flight demonstration of new thruster and green propellant technology on the PRISMA satellite[J]. Acta Astronautica, 2009, 65 (9-10): 1238-1249. DOI: 10.1016/j.actaastro.2009.03.056
[10] Neff K, King P, Anflo K, et al. High performance green propellant for satellite applications[C]. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, 2009.
[11] Anflo K, Persson S, Bergman G, et al. Flight demonstration of an ADN-based propulsion system on the PRISMA satellite[C]. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, 2006.
[12] Hanson R K. Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems[J]. Proceedings of the Combustion Institute, 2011, 33 (1): 1-40. DOI: 10.1016/j.proci.2010.09.007
[13] Yao Z, Zhang W, Wang M, et al. Tunable diode laser absorption spectroscopy measurements of high-pressure ammonium dinitramide combustion[J]. Aerospace Science and Technology, 2015. 45: 140-149. DOI: 10.1016/j.ast.2015.05.003
[14] Zeng H, Li F, Zhang S, et al. Midinfrared absorption measurements of nitrous oxide in ammonium dinitramide monopropellant thruster[J]. Journal of Propulsion and Power, 2015, 31 (5): 1496-1500. DOI: 10.2514/1.B35648
[15] 张伟, 沈岩, 姚兆普, 等. 基于量子级联激光器的ADN基液体发动机稳态燃烧CO特征浓度的实验测量[J]. 中国科学技术科学 (中文版), 2015, 45 (1): 15-20. http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201501003.htm Zhang W, Shen Y, Yao Z P, et al. Concentration measurement of carbon monoxide in the combustion chamber of ADN-based thruster with QCL[J]. Sci Sin Tech, 2015, 45 (1): 15-20. http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201501003.htm
[16] 张伟, 沈岩, 余西龙, 等. ADN基发动机燃烧室CO组分实验测量[J]. 推进技术, 2015, 36 (5): 650-655. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201505002.htm Zhang W,Shen Y,Yu X L, et al. Concentration measurement of carbon monoxide in combustion chamber of an ADN-Based propellant thruster[J]. Journal of Propulsion Technology, 2015, 36 (5): 650-655. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201505002.htm
[17] Sinditskii V P, Egorshev V Y, Levshenkov A I, et al. Combustion of ammonium dinitramide, Part 2: combustion mechanism[J]. Journal of Propulsion and Power, 2006, 22 (4): 777-785. DOI: 10.2514/1.17955
[18] Baer D S, Nagali V, Furlong E R, et al. Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers[J]. AIAA Journal, 1996, 34 (3): 489-493. DOI: 10.2514/3.13094
[19] Nagali V, Chou S I, Baer D S, et al. Tunable diode-laser absorption measurements of methane at elevated temperatures[J]. Applied Optics, 1996, 35 (21): 4026-4032. DOI: 10.1364/AO.35.004026
[20] Spearrin R, Goldenstein C, Schultz I, et al. Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy[J]. Applied Physics B, 2014, 117 (2): 689-698. DOI: 10.1007/s00340-014-5884-0
[21] Schultz I A, Goldenstein C S, Mitchell R Spearrin, et al. Multispecies midinfrared absorption measurements in a hydrocarbon-fueled scramjet combustor[J]. Journal of Propulsion and Power, 2014, 30 (6): 1595-1604. DOI: 10.2514/1.B35261
[22] Thakre P, Duan Y, Yang V. Modeling of ammonium dinitramide (ADN) monopropellant combustion with coupled condensed and gas phase kinetics[J]. Combustion and Flame, 2014, 161 (1): 347-362. DOI: 10.1016/j.combustflame.2013.08.006
[23] Li J, Zhao Z, Kazakov A, et al. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion[J]. International Journal of Chemical Kinetics, 2007, 39 (3): 109-136. DOI: 10.1002/kin.20218
[24] 屠善澄. 卫星姿态动力学与控制[M]. 北京: 中国宇航出版社, 2006. [25] Hinckel J N, Jorge J A, Neto T G S, et al. Low cost catalysts for hydrazine monopropellant thrusters[C]//Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, 2009.
-
期刊类型引用(4)
1. 王烨,胡佳志,管国祥. 变温度场下提高热线探针标定精度的方法(英文). Journal of Measurement Science and Instrumentation. 2023(02): 164-173 . 百度学术
2. 李云鹏,李若洁,张俊芳,姚仁太. 环境风洞中基于热线和冷线结合的风温瞬态同步测量技术研究. 四川环境. 2021(04): 217-223 . 百度学术
3. 饶剑,马国鹭,宋子军,赵涌,赵登峰,何林. 基于微粒示踪的燃烧尾喷流速场测量方法研究. 光学技术. 2021(05): 577-581 . 百度学术
4. 张云伟,全永凯. 热线风速仪非标定工况下测试修正方法研究. 推进技术. 2018(09): 2094-2101 . 百度学术
其他类型引用(5)