光场单相机三维流场测试技术

丁俊飞, 许晟明, 施圣贤

丁俊飞, 许晟明, 施圣贤. 光场单相机三维流场测试技术[J]. 实验流体力学, 2016, 30(6): 50-58. DOI: 10.11729/syltlx20160141
引用本文: 丁俊飞, 许晟明, 施圣贤. 光场单相机三维流场测试技术[J]. 实验流体力学, 2016, 30(6): 50-58. DOI: 10.11729/syltlx20160141
Ding Junfei, Xu Shengming, Shi Shengxian. Light field volumetric particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 50-58. DOI: 10.11729/syltlx20160141
Citation: Ding Junfei, Xu Shengming, Shi Shengxian. Light field volumetric particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 50-58. DOI: 10.11729/syltlx20160141

光场单相机三维流场测试技术

基金项目: 

国家自然科学基金 11472175

上海市启明星项目 15QA1402400

详细信息
    作者简介:

    丁俊飞(1992-), 男, 山西太原人, 博士研究生。研究方向:三维流体测量。通信地址:上海交通大学机械与动力工程学院燃气轮机研究院(200240)。E-mail:junfeiding@sjtu.edu.cn

    通讯作者:

    施圣贤, E-mail:kirinshi@sjtu.edu.cn

  • 中图分类号: V211.71

Light field volumetric particle image velocimetry

  • 摘要: 将光场三维成像技术与实验流体力学相结合,实现单相机对空间三维瞬态流场(3D3C)的精确测量,为流体力学实验研究提供了一种全新的测试技术。详细介绍了具有自主知识产权的光场相机硬件系统、基于乘积代数重建技术(MART)的粒子光场图像重构算法以及基于光线追迹的数字光场图像合成算法。利用DNS数字合成图像以及低速射流实验图像,将所发展的光场单相机三维流场测试技术(Light Field Particle Image Velocimetry,LF-PIV)与目前最成熟的三维流场测试技术层析PIV(Tomographic Particle Image Velocimetry,Tomo-PIV)进行对比研究分析。实验结果表明LF-PIV技术完全能达到与Tomo-PIV同等量级的测量精度。
    Abstract: A novel single camera volumetric velocity measurement technique is presented, which utilizes the advanced light field imaging technology to capture 3D PIV tracer particle images. The framework of Light Field Particle Image Velocimetry (LF-PIV) includes an in-house high resolution light field camera, multiplicative algebraic reconstruction technique (MART) based light field particle image reconstruction method and a ray tracing based synthetic light field particle image generation platform. The LF-PIV technique is compared with Tomographic Particle Image Velocimetry (Tomo-PIV) by using both synthetic DNS jet flow images as well as water jet experimental images. Results show that LF-PIV is capable of reconstructing the instantaneous volumetric velocity field with the accuracy similar to that of Tomo-PIV.
  • 图  1   光场的2种参数化表示方式[29]

    Fig.  1   Two methods of light field parameterisation

    图  2   光场相机原理示意图及光线追迹原理示意图[26, 28]

    Fig.  2   Schematics of light field camera and ray tracing method

    图  3   自主光场相机系统

    Fig.  3   In-house light field camera system

    图  4   原始光场图片及光场渲染效果

    Fig.  4   Raw light field image and results of refocusing and perspective shift processing

    图  5   基于密集光线追迹的权重系数算法原理示意图[26, 28]

    Fig.  5   Schematics of ray tracing based weighting coefficient method

    图  6   对比仿真分析结果

    Fig.  6   Simulation results

    图  7   LF-PIV和Tomo-PIV的测量误差

    Fig.  7   Measurement error of LF-PIV and Tomo-PIV

    图  8   LF-PIV、Tomo-PIV同步测试实验系统实物图

    Fig.  8   Experimental setup of LF-PIV and Tomo-PIV system

    图  9   实验粒子光场图像局部放大图

    Fig.  9   Real light field particle image (zoom in)

    图  10   实验三维瞬态速度场

    Fig.  10   Instantaneous velocity fields

    表  1   用于产生数字合成光场图像的光学参数数值

    Table  1   Parameters for generating synthetic light field images

    符号意义相机参数合成图像参数
    nlxMLA x方向分辨率410410
    nlyMLA y方向分辨率310310
    pl微透镜单元直径77μm77μm
    fl微透镜焦距310μm310μm
    npx相机x方向分辨率6600pixel6600pixel
    npy相机y方向分辨率4400pixel4400pixel
    pp像素直径5.5μm5.5μm
    fm主镜头焦距-50mm
    pm主镜头孔径-25mm
    So物距-100mm
    Sl相距-100mm
    M放大系数--1
    (f/#)m主镜头f-2
    (f/#)l微透镜f-4
    下载: 导出CSV
  • [1]

    Adrian R J, Yao C S. Development of pulsed laser velocimetry (PLV) for measurement of turbulent flow[C]//Int Symposium on Turbulence, University of Missouri, Rolla, 1984.

    [2]

    Raffel M, Willert C E, Wereley S, et al. Particle image velocimetry a practical guide[M]. 2nd ed. Berlin, Heidelberg, New York:Springer, 2007.

    [3]

    Schroeder A, Willert C E. Particle image velocimetry:new developments and recent applications[M]. New York:Springer, 2008.

    [4]

    Adrian R J, Westerweel J. Particle Image Velocimetry[M]. Cambridge:Cambridge University Press, 2010.

    [5]

    Arroyo M P, Greated C A. Stereoscopic particle image velocimetry[J]. Measurement Science and Technology, 1991, 2:1181-1186. DOI: 10.1088/0957-0233/2/12/012

    [6]

    Prasad A K, Adrian R J. Stereoscopic particle image velocimetry applied to liquid flows[J]. Experiments in Fluids, 1993, 15:49-60. https://www.researchgate.net/publication/226693782_Stereoscopic_particle_image_velocimetry_applied_to_liquid_flows

    [7]

    Brucker C. 3-D Scanning-Particle-Image-Velocimetry:technique and application to a spherical cap wake flow[J]. Applied Scientific Research, 1996, 56:157-179. DOI: 10.1007/BF02249379

    [8]

    Hori T, Sakakibara J. High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids[J]. Measurement Science and Technology, 2004, 15:1067-1078. DOI: 10.1088/0957-0233/15/6/005

    [9]

    Scarano F. Tomographic PIV:principles and practice[J]. Measurement Science and Technology, 2013, 24:1-28. https://www.researchgate.net/publication/258294865_Tomographic_PIV_Principles_and_practice

    [10]

    Willert C, Gharib M. Three-dimensional particle imaging with a single camera[J]. Experiments in Fluids, 1992, 12:353-358. DOI: 10.1007/BF00193880

    [11]

    Pereira F, Gharib M, Dabiri D, et al. Defocusing PIV:a three-component 3-D PIV measurement technique application to bubbly flows[J]. Experiments in Fluids, 2000, 29:S78-S84. DOI: 10.1007/s003480070010

    [12]

    Hinsch K. Holographic particle image velocimetry[J]. Mea-surement Science and Technology, 2002, 13:R61-R72. DOI: 10.1088/0957-0233/13/7/201

    [13]

    Arroyo M, Hinsch K. Recent developments of PIV towards 3D measurements[M]//Particle Image Velocimetry:New Developments and Recent Applications. New York:Springer, 2008.

    [14]

    Katz J, Sheng J. Applications of holography in fluid mechanics and particle dynamics[J]. Annual Review of Fluid Mechanics, 2010, 42:531-555. DOI: 10.1146/annurev-fluid-121108-145508

    [15]

    Elsinga G, Scarano F, Wieneke B, et al. Tomographic particle image velocimetry[J]. Experiments in Fluids, 2006, 41:933-947. DOI: 10.1007/s00348-006-0212-z

    [16]

    Belden J, Truscott T, Axiak M, et al. Three-dimensional synthetic aperture particle image velocimetry[J]. Measurement Science and Technology, 2010, 21:1-21. https://www.researchgate.net/publication/228982030_Three-dimensional_synthetic_aperture_particle_image_velocimetry

    [17]

    Gao Q, Wang H P, Wang J J. A single camera volumetric particle image velocimetry and its application[J]. Science China Technological Sciences, 2012, 55:2501-2510. DOI: 10.1007/s11431-012-4921-7

    [18]

    Ng R, Levoy M, Bredif M, et al. Light field photography with a hand-held plenoptic camera[R]. Tech report CTSR 2005-02, California:Stanford University, 2005.

    [19]

    Ng R. Digital light field photography[D]. Stanford University, CA, USA, 2006.

    [20]

    Lytro Inc. Lytro illum[EB/OL].[2016-09-10]. https://www.lytro.com/.

    [21]

    Cenedese A, Cenedese C, Furia F, et al. 3D particle reconstruction using light field imaging[C]//16th Int Symp on Applications of Laser Techniques to Fluid Mechanics. Lisbon, Portugal, 2012.

    [22]

    Foy R, Vlachos P. Multi-camera plenoptic particle image velocimetry[C]//10th International Symposium on Particle Image Velocimetry-PIV13. Delft, The Netherlands, 2013.

    [23]

    Raytrix GmbH Inc. 3D light field camera solutions[EB/OL].[2016-09-15]. https://www.raytrix.de/produkte/.

    [24]

    Chen H, Sick V. Plenoptic particle tracking velocimetry for internal combustion engine measurements[C]//11th International Symposium on Particle Image Velocimetry-PIV15, Santa Barbara, California, 2015.

    [25] 丁俊飞, 施圣贤.基于光场成像原理的单相机三维流动测试技术[C]//第十四届全国实验力学学术会议.重庆, 2015.
    [26]

    Ding J F, Wang J H, Liu Y Z, et al. Dense ray tracing based reconstruction algorithm for light field volumetric particle image velocimetry[C]//7th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion. Melbourne, Australia, 2015.

    [27]

    Fahringer T W, Lynch K P, Thurow B S. Volumetric particle image velocimetry with a single plenoptic camera[J]. Measurement Science and Technology, 2015, 26:115201. DOI: 10.1088/0957-0233/26/11/115201

    [28]

    Shi S, Wang J, Ding J, et al. Parametric study on light field volumetric particle image velocimetry[J]. Flow Measurement and Instrumentation, 2016, 49:70-88. DOI: 10.1016/j.flowmeasinst.2016.05.006

    [29]

    Levoy M. Light fields and computational imaging[J]. Compu-ter, 2006, 8:46-55. https://graphics.stanford.edu/papers/lfphoto/

    [30]

    Adelson E H, Bergen J R. The plenoptic function and the elements of early vision[C]//Computational Models of Visual Processing. Cambridge, Mass:MIT Press, 1991.

    [31]

    Levoy M, Hanrahan P. Light field rendering[J]. ACM Trans Graph, 1996, 31-42.

    [32]

    Georgiev T, Zheng K, Curless B, et al. Spatio-angular resolution tradeoff in integral photography[C]//17th Eurographics Symposium on Rendering, Cyprus, 2006.

    [33]

    Buchmann N, Willert C, Soria J. Pulsed, high-power LED illumination for tomographic particle image velocimetry[J]. Experiments in Fluids, 2012, 53:1545-1560. DOI: 10.1007/s00348-012-1374-5

    [34]

    Wieneke B. Volume self-calibration for 3D particle image velocimetry[J]. Experiments in Fluids, 2008, 45:549-556. DOI: 10.1007/s00348-008-0521-5

    [35]

    Atkinson C, Soria J. An efficient simultaneous reconstruction technique for tomographic particle image velocimetry[J]. Experiments in Fluids, 2009, 47:553-568. DOI: 10.1007/s00348-009-0728-0

图(10)  /  表(1)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  160
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-17
  • 修回日期:  2016-10-12
  • 刊出日期:  2016-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭