临近空间低速飞行器风速仪研制及其在低温低压风洞中的标定试验

Development of near-space-vehicle anemometer and calibration tests in low-temperature-low-static-pressure wind tunnel

  • 摘要: 本文介绍了一种新型临近空间低速飞行器风速测量装置。风速仪基于旋转测压旋杆、增加测压旋杆两端测压探头动压的原理设计,在临近空间环境和超低动压条件下具有较高的风速测量精度。在中国电子科技集团公司第二十一研究所的临近空间环境模拟风洞中开展了低温低压低风速测量标定试验,试验来流速度范围为5~14m/s。试验结果表明,测量的动压信号与正/余弦函数拟合结果一致性较高,压差测量值的相对量可信度较高。此外,压差幅值信号与来流风速成线性关系,通过线性拟合的方法获得风速仪的测量标定模型。

     

    Abstract: A new kind of anemometer to measure the air speed of the near-space low speed vehicle is introduced in this paper. This equipment is designed based on the theory that rotating the measuring arms increases the acquired dynamic pressure. Benefitted from this theory, the anemometer can measure the wind speed with reasonable precision in situations of ultralow dynamic pressure in the near space environment. A series of tests are completed in the near-space environment simulation wind tunnel in the 21th Research Institute of CETC, whose inflow air speed is available from 5 to 14 meters per second. The results show that the measured dynamic pressure curves are coincident with the sine function curves and there is a significant linear correlation between the amplitude of the dynamic pressure and the inflow airspeed. Based on the linear fit method, a calibration model of the anemometer is established.

     

/

返回文章
返回