Thermodynamics model updating of cryogenic wind tunnel diffuser based on response surface method
-
摘要: 低温风洞运行过程消耗大量液氮和电力,洞体结构产生附加热应力和热变形,建立可靠的低温风洞热力学模型对研究风洞运行安全性和经济性是必不可少的。以低温风洞扩散段为方法研究对象,建立有限元热力学模型,为提高热力学模型和实际模型的相关性,使用响应面法对有限元热力学模型多个参数进行修正。通过对比分析温度、应力监测点试验数据和仿真数据的差别,确定驻室锥形体内表面对流换热系数为待修正参数;使用中心复合试验设计生成有限元热分析样本空间,以温度、应力监测点试验数据和仿真数据的残差均方和为考核指标,在样本空间内对残差均方和进行非线性回归分析,建立残差均方和的响应面模型;以所有监测点残差均方和总和为目标函数,在样本空间内进行多目标非线性优化分析,得到最优解;验证修正后的热力学模型,结果表明:(1)基于响应面法的热力学模型修正是可行的;(2)修正后的热力学模型分析数据与试验数据吻合性提高,并且适用于其它降温试验。Abstract: A great amount of liquid nitrogen and power is consumed to run the cryogenic wind tunnel. The temperature variation of the wind tunnel may cause excessive thermal deformation and stress, which can have a significant influence on the wind tunnel safety. Thus, it is indispensable to develop the reliable thermodynamic model of the cryogenic wind tunnel for evaluating the safety, performance and economy efficiency. In this paper the cryogenic wind tunnel diffuser is studied and its thermodynamic model is established based on the finite elements method. Moreover, the response surface method is adopted to correct some model parameters for purposes of improving the consistency between the finite elements model and the actual model. Firstly, according to the differences between the test data and simulation results the internal surface convective heat transfer coefficients of the plenum tapered shell are chosen as the parameters that need to be corrected. Secondly, the sample space of the finite elements thermal analysis is generated by using the central composite experiment design. Thirdly, the nonlinear regress analysis of the residual mean square is carried out in the sample space to establish the response surface model. Finally, the residual mean square sum of all monitor results is taken as the objective function and then the thermodynamic model is analyzed and optimized by means of the nonlinear multi-object optimization algorithm. The model verification results show that the updated thermodynamic model is highly consistent with the actual model and it is feasible to correct the thermodynamic model with the response surface method.
-
-
表 1 修正目标水平表(单位:W/(m2·K))
Table 1 Modal updating parameters and level
Level -2 -1 0 1 2 h 2 7.75 13.5 19.25 25 表 2 参数修正结果(单位:W/(m2·K))
Table 2 Model updating result
Parameter h1 h2 h3 h4 h5 Updated level 1.88 -1.95 -1.55 -1.66 0.35 Updated h 24.34 2.32 4.59 3.95 15.48 表 3 试验应力值和修正应力值误差分析
Table 3 Stress error analysis of test and updated model
Time/s Update value/MPa Test value/MPa Error/% 1000 1.90 15.35 107.8 2000 47.74 37.07 28.8 3000 53.88 43.16 24.8 4000 59.20 48.27 22.7 5000 73.83 68.44 7.9 6000 90.79 88.56 2.5 -
[1] 麻越垠, 陈万华, 王元兴, 等.风洞模型支撑系统振动主控控制试验研究[J].机械强度, 2015, 37(2):232-236. http://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201502008.htm Ma Y Y, Chen W H, Wang Y X, et al. Active vibration control experimental investigation on wind tunnel model support system[J]. Journal of Mechanical Strength, 2015, 37(2):232-236. http://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201502008.htm
[2] 李鹏, 张崇峰, 陈宝东, 等.利用热平衡试验稳态数据修正对接机构热力学模型[J].上海航天, 2011, 28(04):57-61. DOI: 10.3969/j.issn.1006-1630.2011.04.014 Li P, Zhang C F, Chen B D, et al. Correction of thermal model of docking mechanism with steady data in thermal balance test[J]. Aerospace Shanghai, 2011, 28(04):57-61. DOI: 10.3969/j.issn.1006-1630.2011.04.014
[3] 刘娜, 程文龙, 钟奇, 等.基于蒙特卡罗法的卫星热力学模型参数敏感性分析研究[J].航天器工程, 2009, 18(04):102-107. DOI: 10.3969/j.issn.1673-8748.2009.04.018 Liu N, Cheng W L, Zhong Q, et al. Sensitivity analysis of spacecraft thermal model based on Mento-Carlo method[J]. Spacecraft Engineering, 2009, 18(04):102-107. DOI: 10.3969/j.issn.1673-8748.2009.04.018
[4] 杨沪宁, 钟奇.航天器热力学模型蒙特卡罗法修正论述[J].航天器工程, 2009, 18(03):53-58. DOI: 10.3969/j.issn.1673-8748.2009.03.009 Yang H N, Zhong Q. Monte-Carlo method for thermal model correction of spacecraft[J]. Spacecraft Engineering, 2009, 18(03):53-58. (in Chinese) DOI: 10.3969/j.issn.1673-8748.2009.03.009
[5] 刘娜. 随机近似热力学模型修正方法及相变热控关键问题研究[D]. 合肥: 中国科学技术大学, 2012. Liu N. Study on stochastic approximation thermal model correction method and phase change thermal control[D]. Hefei:University of Science and Technology of China, 2012.
[6] 邓小雷, 傅建中, 夏晨晖, 等.数控机床主轴系统热力学模型参数多目标修正方法[J].机械工程学报, 2014, 50(15):119-126. Deng X L, Fu J Z, Xia C H, et al. Multi-objective correction method for thermal model parameters of CNC machine tool spindle system[J]. Journal of Mechanical Engineering, 2014, 50(15):119-126.
[7] 王开山, 李传日, 郭恒晖, 等.基于相关性分析的PCBA热力学模型修正[J].装备环境工程, 2014, 11(05):119-124. http://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201405023.htm Wang K S, Li C R, Guo H H, et al. Study on the Method of thermodynamics model updating of printed circuit board assembly[J]. Equipment Environment Engineering, 2014, 11(05):119-124. http://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201405023.htm
[8] 段巍, 王璋奇.利用响应面方法的汽轮机叶片振动可靠性分析[J].振动.测试与诊断, 2012, 32(01):84-90. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201201019.htm Duan W, Wang Z Q. Vibration reliability analysis of turbine blade based on response surface method[J]. Journal of Vibration, Measurement and Diagnosis, 2012, 32(01):84-90. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201201019.htm
[9] 鲍诺, 王春洁.基于响应面优化的结构有限元模型修正[J].北京航空航天大学学报, 2014, 40(07):927-933. http://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201305016.htm Bao N, Wang C J. Structural finite element model updating based on response surface optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(07):927-933. http://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201305016.htm
[10] 方圣恩, 张秋虎, 林友勤, 等.不确定性参数识别的区间响应面模型修正方法[J].振动工程学报, 2015, 28(01):73-81. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201501010.htm Fang S E, Zhang Q H, Lin Y Q, et al. Uncertain parameter identification using interval response surface model updating[J]. Journal of vibration engineering, 2015, 28(01):73-81. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201501010.htm
[11] 邱飞力, 张立民, 张卫华, 等.基于响应面方法的支架结构模型修正研究[J].噪声与振动控制, 2014, 34(03):139-143. DOI: 10.3969/j.issn.1006-1335.2014.03.030 Qiu F L, Zhang L M, Zhang W H, et al. Study on frame model updating based on response surface method[J]. Noise and Vibration Control, 2014, 34(03):139-143. DOI: 10.3969/j.issn.1006-1335.2014.03.030
[12] 苏忠亭, 徐达, 杨明华.基于模态试验的某火炮身管有限元模型修正[J].振动与冲击, 2012, 31(24):54-59. DOI: 10.3969/j.issn.1000-3835.2012.24.012 Su Z T, Xu D, Yang M H. Finite-element model updating for a gun barrel based on modal test[J]. Journal of Vibration and Shock, 2012, 31(24):54-59. DOI: 10.3969/j.issn.1000-3835.2012.24.012
[13] Incropero F P, DeWitt D P, Bergman T L, 等. 葛新石, 叶宏, 译. 传热和传质基本原理[M]. 北京: 化学工业出版社, 2009: 318-320. Incropero F P, DeWitt D P, Bergman T L, et al. Ge Xinshi, Ye Hong, translated. Fundamentals of heat and mass transfer[M]. Beijing:Chemical Industry Press, 2009:318-320.
[14] 贾力, 方肇洪.高等传热学[M].北京:高等教育出版社, 2008:225-227. Jia L, Fang Z H. Higher heat transfer[M]. Beijing:Higher Education Press, 2008:225-227.
[15] 万华平, 任伟新, 魏锦辉.基于高斯过程响应面的结构有限元模型修正方法[J].振动与冲击, 2012, 31(24):82-87. DOI: 10.3969/j.issn.1000-3835.2012.24.017 Wan H P, Ren W X, Wei J H. Structural finite element model updating based on Gaussian process response surface methodology[J]. Journal of Vibration and Shock, 2012, 31(24):82-87. DOI: 10.3969/j.issn.1000-3835.2012.24.017
[16] 秦玉灵, 孔宪仁, 罗文波.基于径向基函数响应面的机翼有限元模型修正[J].北京航空航天大学学报, 2011, 37(11):1465-1470. http://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201111027.htm Qin Y L, Kong X R, Luo W B. Finite element model updating of airplane wing based on Gaussian radial basis function response surface[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(11):1465-1470. http://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201111027.htm
[17] 任伟新, 陈华斌.基于响应面的桥梁有限元模型修正[J].土木工程学报, 2008, 41(12):73-78. DOI: 10.3321/j.issn:1000-131X.2008.12.012 Ren W X, Chen H B. Response-surface based on finite element model updating of bridge structures[J]. China Civil Engineering Journal, 2008, 41(12):73-78. DOI: 10.3321/j.issn:1000-131X.2008.12.012
[18] 费庆国, 张令弥, 李爱群, 等.基于统计分析技术的有限元模型修正研究[J].振动与冲击, 2005, 24(3):23-26. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200503007.htm Fei Q G, Zhang L M, Li A Q, et al. Finite element model updating using statistics analysis[J]. Journal of Vibration and Shock, 2005, 24(3):23-26. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200503007.htm
[19] 李佰灵, 荣克林.基于响应面方法的多目标有限元模型修正技术研究[J].强度与环境, 2010, 37(4):13-21. http://www.cnki.com.cn/Article/CJFDTOTAL-QDHJ201004003.htm Li B L, Rong K L. Study of finite element model updating for multi-objective based on the response surface method[J]. Structure & Environment Engineering, 2010, 37(4):13-21. http://www.cnki.com.cn/Article/CJFDTOTAL-QDHJ201004003.htm
[20] 魏锦辉, 任伟新.结构有限元模型修正的自适应响应面方法[J].振动与冲击, 2013, 32(08):114-119. DOI: 10.3969/j.issn.1000-3835.2013.08.020 Wei J H, Ren W X. FE model updating based on adaptive response surface method[J]. Journal of Vibration and Shock, 2013, 32(08):114-119. DOI: 10.3969/j.issn.1000-3835.2013.08.020
[21] 费业泰.误差理论与数据处理[M].合肥:合肥工业大学出版社, 2004:139-141. Fei Y T. Error theory and data processing[M]. Hefei:Hefei University of Technology Press, 2004:139-141.