Research on HIFiRE project's hypersonic vehicle integrated design of aerodynamic and scramjet propulsion
-
摘要: 美澳通过HIFiRE项目在高超声速飞行器的气动、推进和控制等领域进行了深入探索,并对一体化设计有动力飞行器的高速性能进行了评估。以单项验证、步步推进的系列飞行试验方式,对乘波体布局以及不同动力方式开展原理研究,结合飞行试验对设计状态进行验证,取得一系列有价值的飞行数据和阶段性成果。通过梳理气动/推进一体化过程中相关飞行试验,提炼出总体设计中的关键技术和试验结论,并对有动力飞行器的发展趋势作了分析。研究显示发生转捩的单位雷诺数范围在3×106~4×106之间,适应小迎角高升力特点的乘波体与超燃冲压发动机的组合成为优选方案,所取得的成果为带超燃冲压发动机高速飞行器总体方案设计提供了一定的参考。Abstract: By the HIFiRE project, America and Australia have deeply investigated the aerodynamics, propulsion and controlling system of hypersonic aircrafts. The high-speed ability is evaluated for the integrated design of aircrafts with propulsion system. A series of valuable flight-data and staged achievements are obtained by the flight tests of single-target evaluation and step-by-step improvement, the principal study of waverider shapes and different propulsion systems, and the verification of designing condition by flight tests. The key technique and experimental conclusion are summarized for the overall design by organizing the flight tests of dynamics/propulsion integrated processes. Moreover, the developing trend is analyzed for the aircraft with propulsion system. The results show that the unit Reynolds number of the transition is between 3×106 and 4×106, and a combination of scramjet and waverider with high lift characteristics at small attack angle is the optimized design, which gives some suggestions for the overall design of high-speed aircrafts with scramjet.
-
Keywords:
- aerodynamic layout /
- propulsion system /
- integrated design /
- hypersonic /
- flight test
-
-
表 1 HIFiRE项目飞行试验
Table 1 Flight test of HIFiRE project
序号 机构 研究内容 飞行试验时间 飞行试验结果 气动 HIFiRE-0 DSTO 软、硬件系统,传感器及地面遥测系统,重新定位能力 2009.05.07 基本成功 HIFiRE-1 AFRL 圆锥体边界层转捩,激波/边界层干扰 2010.03.22 基本成功 HIFiRE-5 AFRL 三维效应下椭球锥转捩,C/C-SiC材料性能 2012.04.23 失败 HIFiRE-5B AFRL 三维效应下椭球锥转捩,C/C-SiC材料性能 2016.05.18 基本成功 HIFiRE-4 DSTO 乘波体滑翔飞行器布局设计及飞行控制策略 2015.10 成功 动力 HIFiRE-2 AFRL 二元超燃冲压发动机模态转换 2012.05.01 成功 HIFiRE-3 DSTO 轴对称RF超燃冲压发动机 2012.09.13 成功 HIFiRE-7 DSTO 三维REST超燃冲压发动机 2015.03.30 失败 HIFiRE-7B DSTO 三维REST超燃冲压发动机 预计2017 一体化 HIFiRE-6 AFRL 采用AFCS技术的高超声速飞行器机动性能 预计2017 HIFiRE-8 DSTO 气动/动力一体化飞行器30s可控巡航飞行 预计2017 -
[1] Dolvin D. Hypersonic international flight research and experimentation (HIFiRE) fundamental science and technology development strategy[R]. AIAA-2008-2581, 2008.
[2] Schmisseur J D. Hypersonics into the 21st century:a perspective on AFOSR-sponsored research in aerothermodynamics[J]. Progress in Aerospace Sciences, 2015, 72:3-16. DOI: 10.1016/j.paerosci.2014.09.009
[3] Kimmel R, Adamczak D, Stanfield S, et al. HIFiRE-1 boundary layer transition measurements[C]//Proceedings of the 28th International Congress of the Aeronautical Sciences, 2012.
[4] Adamczak D, Kimmel R L, Paull A, et al. HIFiRE-1 flight trajectory estimation and initial experimental results[R]. AIAA-2011-2358, 2011.
[5] Li F, Choudhari M, Chang C L, et al. Hypersonic transition analysis for HIFiRE experiments[C]. Hypersonic Laminar-Turbulent Transition Meeting, California, 2012.
[6] Willems S, Gülhan A, Juliano T J, et al. Laminar to turbulent transition on the HIFiRE-1 cone at Mach 7 and high angle of attack[R]. AIAA-2014-0428, 2014.
[7] Kimmel R, Adamczak D, Berger K, et al. HIFiRE-5 flight vehicle design[R]. AIAA-2010-4985, 2010.
[8] Kimmel R L, Adamczak D, Juliano T J. HIFiRE-5 flight test preliminary results[R]. AIAA-2013-0377, 2013.
[9] Jewell J S, Miller J H, Kimmel R L. Correlation of HIFiRE-5 flight data with computed pressure and heat transfer[R]. AIAA-2015-2319, 2015.
[10] Kimmel R L, Adamczak D, Borg M, et al. HIFiRE-1 and HIFiRE-5 test results[R]. AFRL-RQ-WP-TR-2014-0038, 2014.
[11] Borg M P, Kimmel R L, Stanfield S. Travelingcrossflow instability for the HIFiRE-5 elliptic cone[J]. Journal of Spacecraft and Rockets, 2015, 52(3):664-673. DOI: 10.2514/1.A33145
[12] Kimmel R L, Borg M P, Jewell J S, et al. HIFiRE-5 boundary layer transition and HIFiRE-1 shock boundary layer interaction[R]. AFRL-RQ-WP-TR-2015-0151. 2015.
[13] 叶友达.高超声速空气动力学研究进展与趋势[J].科学通报, 2015, 60:1095-1103. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201512007.htm Ye Y D. Advances and prospects in hypersonic aerodynamics[J]. ChinSci Bull, 2015, 60:1095-1103. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201512007.htm
[14] 贺旭照, 周正, 毛鹏飞, 等.密切曲面内锥乘波前体进气道设计和试验研究[J].实验流体力学, 2014, 28(3):39-44. DOI: 10.11729/syltlx20120176 He X Z, Zhou Z, Mao P F, et al. Design and experimental study of osculating inward turning conewaverider/inlet (OICWI)[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3):39-44. DOI: 10.11729/syltlx20120176
[15] Smith T R, Bowcutt K G, Selmon J R, et al. HIFiRE-4:a low-cost aerodynamics, stability, and control hypersonic flight experiment[R]. AIAA-2011-2275, 2011.
[16] Prime Z, Doolan C, Cazzolato B. Longitudinal 'L' adaptive control of a hypersonic re-entry experiment[C]. AIAC15:15th Australian International Aerospace Congress. 2013:717.
[17] Lau K Y, Woo Y, Tran J, et al. The aerothermal, thermal and structural design process and criteria for the HIFiRE-4 flight test vehicle[R]. AIAA-2012-5842, 2012.
[18] Cabell K, Hass N, Storch A, et al. HIFiRE direct-connect rig (HDCR) phase I scramjet test results from the NASA Langley arc-heated scramjet test facility[R]. AIAA-2011-2248, 2011.
[19] Jackson K R, Gruber M R, Buccellato S. HIFiRE flight 2 overview and status update 2011[R]. AIAA-2011-2202, 2011.
[20] Kevin Jackson, Mark Gruber, Salvatore Buccellato. An overview of the HIFiRE flight 2 project[R]. AIAA-2013-0695, 2013.
[21] 姚路, 刘文清, 阚瑞峰, 等.小型化TDLAS发动机测温系统的研究及进展[J].实验流体力学, 2015, 29(1):71-76. DOI: 10.11729/syltlx20140025 Yao L, Liu W Q, Kan R F, et al. Research and development of a compact TDLAS system to measure scramjet combustion temperature[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1):71-76. DOI: 10.11729/syltlx20140025
[22] 赵慧勇, 易淼荣.高超声速进气道强制转捩装置设计综述[J].空气动力学学报, 2014, 32(5):623-627. DOI: 10.7638/kqdlxxb-2014.0095 Zhao H Y, Yi M R. Review of design for forced-transition trip of hypersonic inlet[J]. Acta Aerodynamica Sinica, 2014, 32(5):623-627. DOI: 10.7638/kqdlxxb-2014.0095
[23] Ferlemann P G. Forebody and inlet design for the hifire 2 flight test[C]. JANNAF Airbreathing Propulsion Subcommittee Meeting, Boston, Massachusetts, 2008.
[24] Boyce R R, McIntyre T. Combustion scaling laws and inlet starting for Mach 8 inlet-injection radical farming scramjets[R]. AOARD 2010-094019, 2010.
[25] Capra B R, Boyce R R, Brieschenk S. Numerical modelling of porous injection in a radical farming scramjet[C]. Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences, 2012.
[26] Capra B R, Boyce R R, Kuhn M, et al. Porous versus porthole fuel injection in a radical farming scramjet:numerical analysis[J]. Journal of Propulsion and Power, 2015, 31(3):789-804. DOI: 10.2514/1.B35404
[27] Capra B R. Porous fuel injection with oxygen enrichment in a viable scramjet engine[C]//The Proceedings of the 19th Australasian Fluid Mechanics Conference, 2014.
[28] Ogawa H, Capra B, Lorrain P. Numerical investigation of upstream fuel injection through porous media for scramjet engines via surrogate-assisted evolutionary algorithms[R]. AIAA-2015-0884, 2015.
[29] Eggers T, Silvester T B, Paull A, et al. Aerodynamic design of hypersonic re-entry flight HIFiRE 7[R]. AIAA-2009-7256, 2009.
[30] Roberts M E, Smart M K, Frost M A. HIFiRE 7:design to achieve scientific goals[R]. AIAA-2012-5841, 2012.
[31] Gollan R J, Ferlemann P G. Investigation of REST-class hypersonic inlet designs[R]. AIAA-2011-2254, 2011.
[32] Wilson Y K Chan, David J Mee, Michael K Smart, et al. Drag reduction by boundary-layer combustion:effects of flow disturbances from rectangular-to-elliptical-shape-transition inlets[J]. Journal of Propulsion and Power, 2015, 31(5):1256-1267. DOI: 10.2514/1.B35335
[33] Chan W Y K, Mee D J, Smart M K, et al. Boundary layer combustion for viscous drag reduction in practical scramjet configurations[C]. 27th International Council of the Aeronautical Sciences, 2010.
[34] 黄伟, 罗世彬, 柳军, 等.基于乘波技术的高超声速巡航飞行器发展趋势与管理模式[J].导弹与航天运载技术, 2009, (4):23-29. http://www.cnki.com.cn/Article/CJFDTOTAL-DDYH200904010.htm Huang W, Luo S B, Liu J, et al. Developmental trend and administrative mode of hypersonic cruise vehicle based on waverider technique[J]. Missile and Space Vehicle, 2009, (4):23-29. http://www.cnki.com.cn/Article/CJFDTOTAL-DDYH200904010.htm
[35] Bolender M A, Staines J T, Dolvin D J. HIFiRE 6:an adaptive flight control experiment[C]. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, 2012. AIAA-2012-0252.
[36] Wiese D P, Annaswamy A M, Muse J A, et al. Adaptive control of a generic hypersonic vehicle[C]. AIAA Guidance, Navigation, and Control (GNC) Conference, 2013. AIAA-2013-4514.
[37] Bisek N J. High-fidelity simulations of the HIFiRE-6 flow path at angle of attack[C]. 46th AIAA Fluid Dynamics Conference, 2016. AIAA-2016-4276.
[38] Eric J S, Scott R H, Casey J R, et al. HIFiRE-6 unstart conditions at off-design Mach numbers[C]. 53rd AIAA Aerospace Sciences Meeting, 2015. AIAA-2015-0109.
[39] Alesi H, Paull A, Smart M, et al. A concept for the HIFiRE-8 flight test[C]. 22nd ESA Symposium on European Rocket and Balloon Programmes and Related Research, 2015, 730:401-408.
[40] Laurence S J, Karl S, Hannemann K. Experimental and numerical investigation of the HyShot Ⅱ flight experiment[C]. 29th International Symposium on Shock Waves 1. Springer International Publishing, 2015:307-312.
[41] Berry S A, Berger K T, Brauckmann G J, et al. NASA Langley experimental aerothermodynamic contributions to slender and winged hypersonic vehicles[C]. 53rd AIAA Aerospace Sciences Meeting, 2015:0213.
[42] Walker S, Rodgers F, Paull A, et al. HyCAUSE flight test program[R]. AIAA-2008-2580, 2008.