基于3D打印的风洞应变天平防护装置设计与应用

Design and application of wind tunnel strain gauge balance protective device based on 3D printing

  • 摘要: 应变天平是风洞测力试验中的主要测量设备,对试验数据质量和运行效率具有重要影响。为了提高天平自身的防护性能,减少试验运行过程中的天平故障概率,提出了基于3D打印风洞应变天平防护装置的快速开发方法。分析了天平防护装置的需求,研究了3D打印天平防护装置的关键技术、设计因素与研制流程。开展了3D打印技术在设计优化验证和风洞试验天平防护装置研制2方面研究。分别设计了整体式水冷罩和组合式杆式天平防护装置。对于具有复杂内部结构的天平水冷罩,3D打印技术可以对设计优化结果进行验证评估。通过3D打印技术完成杆式天平防护装置研制,在风洞试验中对所使用的天平进行了防护应用。实际应用表明,防护装置可有效避免应变计及线路在校准、运输、模型装配和试验过程中损坏。相比传统机械加工,3D打印天平防护装置不仅能实现设计优化验证,而且可大幅降低加工周期和成本,促进了天平综合性能的提升。

     

    Abstract: The strain gauge balance is the main equipment used in wind tunnel test, which has an important influence on the quality of test data and operational efficiency. To improve the balance self-protection performance and lower balance failure rate in test operations, a quick development method based on three-dimensional (3D) printing for the wind tunnel strain gauge balance (SGB) protective device is proposed. By decomposing the design factors, the key factors pertaining to the design of balance protective device are studied. A design flow and method based on 3D printing is put forward. The 3D printing technology can be applied to the optimization of balance guards in two aspects:(1) to optimize and visualize design schemes; (2) to protect strain gauges and circuit on balances for wind tunnel tests. Both water-cooled balance protective device and assembly type mechanical protective device are designed. For the water-cooled device with complex internal structure, 3D printing technology makes design to be visualized, which is helpful for design verification before manufacturing. The assembly type product, manufactured by means of 3D printing technology, is applied in corresponding balance protection for wind tunnel force measurement test. The perfect combination of strain gauge balances with their highly customized, lightweight balance protective devices by 3D printing, serves not only to protect the strain gauges and wires from damages in the process of calibration, transportation, model assembly and testing, but also to make impressive visual artworks of the balances, rendering them functional, practical, economical and artistic. Compared with machining of a balance protective device in the traditional way, 3D printing can greatly reduce the processing cycle and the cost. Meanwhile design visualization can validate technical solutions in the design stage. Both applications promote the overall performance of the balance.

     

/

返回文章
返回