Advances of research on internal cryogenic strain gauge balance abroad
-
摘要: 作为低温风洞测力试验的核心测试设备,低温天平受低温风洞气流温度低、温度变化大的影响,会产生零点温度漂移、灵敏度变化等一系列问题,对试验数据的精准度产生影响。因此,相较常温天平而言,低温天平的研制要求更多,难度也更大。在广泛调研国外低温天平研究进展与关键技术的基础上,系统介绍了低温天平的设计与优化、天平材料的选取及热处理、天平的加工与制造、天平应变片的匹配及粘贴、天平校准方法及校准设备等天平研制的多个关键环节,并对未来低温天平技术的发展进行了展望,为我国低温天平的研制及工程化应用提供参考。Abstract: Cryogenic balance is the key measurement in cryogenic wind tunnel. Due to low air temperature and large temperature variation in the cryogenic wind tunnel, a series of problems arise, such as thermal zero drift and the variation of sensitivity. Therefore there is a risk of decreasing precision of the test data. Thus compared to conventional balances, the development of the cryogenic balance has more requirements and difficulties. By a wide literature survey, the key elements of cryogenic balance are sorted out as follows:design and optimization of balance, material selection and thermal treatment, processing and manufacturing of balance, matching of strain gauge, moisture treatment of balance at low ambient temperature, balance calibration algorithm as well as calibration apparatus and data acquisition equipment. A prospect of the cryogenic balance technologies is also given. The research results presented in this paper are of reference value for development and engineering application of cryogenic balance.
-
Keywords:
- cryogenic wind tunnel /
- strain gauge balance /
- balance design /
- research advances
-
-
项目/
型号固化 成份 粘结
条件使用温度
范围/℃制造
单位UC-27 常温 聚氨酯 室温,
加压24h-269~室温 日本共和
公司PC-6 酚醛 150℃,
加压24h-269~250 日本共和
公司EPY-500 环氧 93℃,
加压26h-269~260 美国BLH
公司PLD-700 加热 聚酰
亚胺260℃,
加压2h-269~399 美国BLH
公司M-Bond
610环氧-
酚醛177℃,
加压1h-269~260 美国MM
公司M-Bond
AE-15环氧 65℃,
加压2h-269~96 美国MM
公司 -
[1] 王发祥, 高速风洞试验[M].北京:国防工业出版社, 2003. [2] 恽起麟, 实验空气动力学[M].北京:国防工业出版社, 1991. [3] Kilgore R A. Evolution and development of cryogenic wind tunnels[R]. AIAA-2005-457, 2005.
[4] Goodyer M J, Kilgore R A. The high Reynolds number cryogenic wind tunnel[R]. AIAA-72-995, 1972.
[5] Wahls R A. The national transonic facility:a research retrospective (invited)[R]. AIAA-2001-0754, 2001.
[6] Clark R W. High Reynolds number testing of advanced transport aircraft wings in the national transonic facility (Invited)[R]. AIAA-2001-0910, 2001.
[7] Juergen Q. First measurements on an airbus high lift configuration at ETW up to flight Reynolds number[R]. AIAA-2002-0423, 2002.
[8] Greena J, Quest J. A short history of the European transonic wind tunnel ETW[J]. Progress in Aerospace Sciences, 2011, 47(5):3219-368. https://www.researchgate.net/publication/232395594_A_short_history_of_the_European_Transonic_Wind_Tunnel_ETW
[9] Ferris Judy. Cryogenic wind tunnel force instrumentation[C]//First International Symposium on Cryogenic Wind Tunnels, Southampton, 1979.
[10] Schoenmakers T J. Development of a non-insulated cryogenic strain-gauge balance[R]. NLR, M-TP-82-006-U, 1982.
[11] Ferris A T. Force instrumentation for cryogenic wind tunnels using one-piece strain-gage balances[R]. NASA-TM-81845, 1980.
[12] Kilgore R A, Davenport E E. Static force tests of a sharp leading edge delta-wing model at ambient and cryogenic temperatures with a description of the apparatus employed[R]. NASA-TM-X-73901, 1976.
[13] Morre T C. Recommended strain gage application procedures for various Langley research center balances and test articles[R]. NASA TM-110327, 1997.
[14] Morre T C. Suggested procedures for installing strain gauges on Langley research center wind tunnel balances, custom force measuring transducers, metallic and composite structural test articles[R]. NASA/TM-2004-213017, 2004.
[15] Boyden R P, Johnson W G. Aerodynamic force measurements with a strain-gage balance in a cryogenic wind tunnel[R]. NASA TP-2251, 1983.
[16] Law R D. Strain-gauge balance performance and internal temperature gradients measured in a cryogenic environment[R]. AD-A248840, 1992.
[17] Baljeu J F. Development of a multi-component internal strain-gauge balance for model tests in a cryogenic wind tunnel[R]. NLR-TR-88157-U, 1990.
[18] Hufnagel K, Ewald B. Force testing with internal strain gage balances[R]. AGARD-R-812, 1996.
[19] Hufnagel K. Present status on internal wind tunnel balance technology[C]//Applied Aerodynamics and Design of Aerospace Vehicle (Sarod 2011) Symposium, Bangalore, India, 2001.
[20] Hufnagel K, Quade M. The 2nd generation balance calibration machine of darmstadt university of technology (TUD)[R]. AIAA-2007-148, 2007.
[21] Parker P A. Cryogenic balance technology at the national transonic facility[R]. AIAA-2001-0758, 2001.
[22] Zhai J N, Ewald B, Hufnagel K. An investigation on the interference of internal six-component wind tunnel balances with FEM[C]//Instrumentation in Aerospace Simulation Facilities, 1995. ICIASF'95 Record, 1995.
[23] Ewald B. The development of electron beam welded, strain-gaged wind-tunnel balances[J]. Journal of Aircraft, 1979, 16:349-352. DOI: 10.2514/3.58530
[24] Rhew R D. NASA LaRC strain gage balance design concepts[R]. NASA/CP-1999-209101/PT1, 1999.
[25] Ewald B. Multi-component force balances for conventional and cryogenic wind tunnels[J]. Meas Sci Technol, 2000, 11:81-94. https://www.researchgate.net/publication/231141681_Multi-component_force_balances_for_conventional_and_cryogenic_wind_tunnels
[26] Rush H F. Grain refining heat treatment to improve cryogenic toughness of high-strength steels[R]. NASA-TM-85816, 1984.
[27] Ferris A T. Cryogenic strain gage techniques used in force balance design for the national transonic facility[R]. NASA-TM-87712, 1986.
[28] Moore T C. Strain gages in use at NASA Langley-a technical review[C]//First International Symposium on Strain Gauge Balances, Hampton, Virginia, 1996.
[29] 尹福炎.电阻应变计技术六十年(4).电结构应变测量用各种电阻应变计[J].传感器世界, 1999, 1:15-25. http://www.cnki.com.cn/Article/CJFDTOTAL-CGSJ199901002.htm Yin F Y. sixty years of electric resistoance strain gages technique (4)[J]. Sensor worle, 1999, 1:15-25. http://www.cnki.com.cn/Article/CJFDTOTAL-CGSJ199901002.htm
[30] Boyden R P, Ferris A T, Johnson W G, et al. Aerodynamic measurements and thermal tests of a strain-gage balance in a cryogenic wind tunnel[R]. NASA-TM-89039, 1987.
[31] Popernack T G, Adcock J B. Cryogenic temperature effects on sting-balance deflections in the national transonic facility[R]. NASA TM-4157, 1990.
[32] Hereford J, Parker P A, Rhew R D. TIGER:development of thermal gradient compensation algorithms and techniques[R]. NASA Technical Report 200400865533, 2004.[WX)][LL][WX (4.5mm, 75.5mm]
[33] Landman D, Yoder D, Reinholtz C, et al. A design of experiments approach applied to wind tunnel balance calibration at arnold engineering development complex[R]. AIAA-2013-1019, 2013.
[34] Ferris A T. Strain gauge balance calibration and data reduction at NASA Langley research center[C]//First International Symposium on Strain Gauge Balances, Hampton, Virginia, 1996.
[35] Ewald B, Polanski L. The cryogenic balance design and balance calibration methods[R]. AIAA-92-4001, 1992.
[36] Ewald B. Theory and praxis of internal strain gage balance calibration for conventional and cryogenic[R]. AIAA-94-2584, 1994.
[37] Polansky L, Kutney J T. A new working automatic calibration machine for wind tunnelinternal force balances[R]. AIAA-93-2467, 1993.
[38] Hufnagel K. TUD calibration machine, production version and upgrades[C]//10th international symposium on strain gage balances, Mianyang, Sichuan, 2016.
[39] Parker P A, Morton M, Draper N. et al. A single-vector force calibration method featuring the modern design of experiments[R]. AlAA-2001-0170, 2001.
[40] Parker P A, Liu T S. Uncertainty analysis of the single-vector force balance calibration system[R]. AIAA-2002-2792, 2002.
[41] Jones S M, Rhew R D. Recent developments and status of the Langley single vector balance calibration system (SVS)[C]//Fourth International Symposium on Strain Gauge Balances, San Diego, California, 2004.
[42] Kimmel W M. Cryogenic model materials[R]. AIAA-2001-0757, 2001.
[43] Devin E B. Review of potential wind tunnel balance technologies[C]//10th international symposium on strain gage balances, Mianyang, Sichuan, 2016.
[44] Hare D A, Moore T C. Characteristics of extrinsic fabry-perot interferometric (EFPI) fiber-optic strain gages[R]. NASA/TP-2000-210639, 2000.
[45] Jansen U, Hildebrand B. The 20mm advantage-shrinking an internal balance to meet clients' demands[R]. AIAA-2013-0416, 2013.
[46] Jansen U, Quest J. SG balance improvements are slowing down-Europe can not wait that long[R]. AIAA-2007-351, 2007.
[47] Semmelmann J. Design, calibration and commissioning of a small cryogenic high load balance for ETW[C]//10th international symposium on strain gage balances, Mianyang, Sichuan, 2016.