Study on the flow of water sand slurry with sliding bed in inclined pipe
-
摘要: 为进一步研究伴有滑动床的倾斜浆体管道砂颗粒输送规律,应用力平衡理论,研究了悬浮层、滑动床层速度以及滑动床厚度求解方法,由此给出了倾斜管道淤积临界速度迭代求解方法。同时,应用悬浮层剪应力线性分布假设,并借助普朗特经验公式,给出了滑动床上方速度分布模型。粗砂管道水力输送实验数据表明:(1)淤积临界流速与颗粒粒径和输送浓度负相关,输送浓度不变时,淤积临界流速与管道倾角大小正相关。与模型计算结果对比表明淤积临界速度计算值和实测值最大偏差为13%;(2)随着管道倾角增加,最大速度点位置有向上偏移的趋势。与计算结果对比表明上层速度分布理论模型计算值和实测值偏差不超过10%。结果表明力平衡理论和剪应力线性分布假设能够较好地用于伴有滑动床的倾斜粗砂浆体管道淤积临界速度和滑动床上方速度分布预测研究。Abstract: In order to further study sand particles' transport rules in the inclined slurry pipe associated with the sliding bed, force balance theories are used to study the method for evaluating the suspended layer and sliding bed velocities as well as the sliding bed thickness, and an iterative method for computing the deposit critical velocity is given. Meanwhile, the shear force linear distribution assumption is used and with the aid of prandt empirical formula, a velocity distribution model above the sliding bed is given. Experimental data of coarse sand pipe hydraulic transportation show that the deposit critical velocity is negatively correlated with the particle size and concentration, and it is positively correlated with the pipe dip angle when the transportation concentration is kept constant. The comparison between the calculated results and the measured results show that the maximum deviation of the calculated value from the measured value is 13%. The experimental data also shows that with the increase of the angle of the pipe, the maximum velocity point position has an upward trend. The comparison between the calculated and measured results shows that the deviation of the theoretical velocity distribution model and the measured value is not more than 10%. Results show that the force balance theory and the linear hypothesis of the shear stress distribution apply well in the research of deposition critical velocity and velocity distribution above sliding bed in the inclined coarse sand slurry pipe accompanied with the sliding bed.
-
-
表 1 水平管道流动实验工况
Table 1 Experimental conditions for horizontal pipe flow
第1组 第2组 第3组 d=0.4mm d=0.6mm d=1.71mm CVd=0.11~0.36 CVd=0.09~0.33 CVd=0.08~0.24 表 2 倾斜管道流动实验工况
Table 2 Experimental conditions for inclined pipe flow
第1组 第2组 第3组 d=0.4mm d=0.6mm d=1.71mm CVd=0.20~0.22 CVd=0.20~0.22 CVd=0.20~0.22 φ=10°~30° φ=10°~30° φ=10°~30° -
[1] 张士林.浆体管道淤积流速数值计算方法研究[J].水力采煤与管道运输, 2011, (4):6-9. http://www.cnki.com.cn/Article/CJFDTOTAL-SLCM201104004.htm Zhang S L. Research on numerical calculation method of slurry pipeline deposition velocity[J]. Hydraulic Coal Mining & Pipeline Transportation, 2011, (4):6-9. http://www.cnki.com.cn/Article/CJFDTOTAL-SLCM201104004.htm
[2] 郗夏楠, 孙西欢, 李永业, 等.管道水力输送临界流速研究进展综述[J].山西水利, 2012, (3):36-38. http://www.cnki.com.cn/Article/CJFDTOTAL-SXLS201203023.htm Xi X N, Sun X H, Li Y Y, et al. Review of research progress on critical flow velocity of pipeline hydraulic transport[J]. Shanxi Water Resources, 2012, (3):36-38. http://www.cnki.com.cn/Article/CJFDTOTAL-SXLS201203023.htm
[3] 陈琴瑞, 李甲.浆体管道输送临界流速经验公式适宜性分析[J].中国矿山工程, 2015, 4(6):73-75. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKS201506027.htm Chen Q R, Li J. Suitability analysis of empirical formulas for critical velocity in slurry pipeline transportation[J]. China Mine Engineering, 2015, 4(6):73-75. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKS201506027.htm
[4] 王新民, 李天正, 张钦礼.基于GA-ELM浆体管道输送临界流速预测模型研究[J].中国安全生产科学技术, 2015, 11(8):101-105. http://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201508019.htm Wang X M, Li T Z, Zhang Q L. Study on prediction model of critical flow velocity in slurry pipeline transportation based on GA-ELM[J]. Journal of Safety Science and Technology, 2015, 11(8):101-105. http://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201508019.htm
[5] 秦德庆, 曹斌, 夏建新.不同颗粒物料管道水力输送不淤临界流速的确定[J].矿冶工程, 2014, 34(1):9-11. http://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201401005.htm Qin D Q, Cao B, Xia J X. Study on non-depositing velocity of different particle materials in pipeline by hydraulic transportation[J]. Mining and Metallurgical Engineering, 2014, 34(1):9-11. http://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201401005.htm
[6] 旷水泉.大石河铁尾矿高浓度管道输送临界流速研究[J].水力采煤与管道运输, 2015, (2):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-SLCM201502003.htm Kuang S Q. Study on critical flow velocity of high concentration pipeline transportation of iron tailings in Dashihe[J]. Hydraulic Coal Mining & Pipeline Transportation, 2015, (2):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-SLCM201502003.htm
[7] Souza P T C, Moraes J D, Slatter P T, et al. Modelling the critical velocity for heterogeneous flow of mineral slurries[J]. In International Journal of Multiphase Flow, 2014, 65:31-37. DOI: 10.1016/j.ijmultiphaseflow.2014.05.013
[8] Sanni E S, Olawale S A, Adefila S S. Theoretical study of sand entrainment and deposits in horizontal oil transport[J]. Science Research, 2015, 3(6):314-323. DOI: 10.11648/j.sr.20150306.18
[9] Rice H P, Fairweather M, Peakall J, et al. Constraints on the functional form of the critical deposition velocity in solid-liquid pipe flow at low solid volume fractions[J]. Chemical Engineering, 2015, (126):759-770. https://www.researchgate.net/publication/272758756_Constraints_on_the_functional_form_of_the_critical_deposition_velocity_in_solid-liquid_pipe_flow_at_low_solid_volume_fractions
[10] Boulanger J, Joan B. Sand suspension deposition in horizontal low-concentration slurry pipe flows[J]. Granular Matter, 2016, 18(2):1-10. https://www.researchgate.net/publication/297651164_Sand_suspension_deposition_in_horizontal_low-concentration_slurry_pipe_flows?_sg=zNVlcqEbfcJPw-dBF5k3l_4KQLJlS0kDVk964Hwdp3ErqmFynsyUA3hV5TtsOIQVnRoh_Zo3ChUXwhJrZXxkDUncdamtnm2nbMkVS0wbnqY
[11] Harbottle D, Fairweather M, Biggs S. The minimum transport velocity of colloidal silica suspensions[J]. Chemical Engineering Science, 2011, 66(11):2309-2316. DOI: 10.1016/j.ces.2011.02.012
[12] Rice H. Transport and deposition behaviour of model slurries in closed pipe flow[D]. Leeds:University of Leeds, 2013:112-122.
[13] Kotzé M, Sutherland A, Kotzé R. A system to estimate coarse particle velocities at the pipe wall in settling slurry flow[J]. Flow Measurement and Instrumentation, 2013, (32):63-70. https://www.researchgate.net/publication/257396499_A_system_to_estimate_coarse_particle_velocities_at_the_pipe_wall_in_settling_slurry_flow
[14] Mario R R, Eduardo S A. Two-layer model for horizontal pipe flow of newtonian and non-newtonian settling dense slurries[J]. Ind Eng Chem Res, 2012, 51(20):7095-7103. DOI: 10.1021/ie201667k
[15] Abd Al Aziz A I, Mohamed H I. A study of the factors affecting transporting solid-liquid suspension through pipelines[J]. Open Journal of Fluid Dynamics, 2013, (3):152-162. http://www.oalib.com/paper/2991295
[16] Vaclav M, Jan K. Stationary-and sliding beds in pipe flows of settling slurry[C]//The Proceedings of the 15th International Freight Pipeline Society Symposium. Prague:Taylor & Francis, 2014:231-237.
[17] Matouseka V, Krupickaa J, Penika V. Distribution of medium-to-coarse glass beads in slurry pipe flow:evaluation of measured concentration profiles[J]. Particulate Science and Technology, 2014, 32(2):186-196. DOI: 10.1080/02726351.2013.840706
[18] Matouseka V, Krupickaa J, Penika V. Distribution of medium-to-coarse glass beads in slurry pipe flow:evaluation of measured concentration profiles[J]. Particulate Science and Technology, 2014, 32(2):186-196. DOI: 10.1080/02726351.2013.840706
[19] Sape A M. An overview of theories describing head losses in slurry transport:a tribute to some of the early researchers[J]. Pipeline and Riser Technology, 2013, 4(03):233-241. https://www.researchgate.net/profile/Sape_Miedema/publication/271445841_AN_OVERVIEW_OF_THEORIES_DESCRIBING_HEAD_LOSSES_IN_SLURRY_TRANSPORT_A_TRIBUTE_TO_SOME_OF_THE_EARLY_RESEARCHERS/links/54ca5a2e0cf2c70ce521cb72.pdf?origin=publication_list
[20] 赵利安.大颗粒浆体管内流动规律研究[D].阜新:辽宁工程技术大学, 2011:98-109. Zhao Li-an. Study on flow law of large particle slurry in pipeline[D]. Fuxin:Liaoning Technical University, 2011:98-109.
[21] 林雪松, 陈殿强, 何峰, 等.固液两相流中颗粒浓度分布统一公式的研究[J].水资源与水工程学报, 2013, 24(4):82-84. http://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201304021.htm Lin X S, Chen D Q, He F, et al. Study on unified formula of particle concentration distribution in two-phase flow of liquid-solid[J]. Journal of Water Resources & Water Engineering, 2013, 24(4):82-84. http://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201304021.htm
[22] 傅旭东, 王光谦.低浓度固液两相流中的粗颗粒浓度分布[J].清华大学学报(自然科学版), 2002, 42(10):1361-1364. http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200210022.htm Fu X D, Wang G Q. Concentration distribution of coarse particles in dilute solid/liquid two-phase floes[J]. Journal of Tsinghua University (Science & Technology), 2002, 42(10):1361-1364. http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200210022.htm
[23] 赵利安, 孟庆华.伴有滑动床的浆体倾斜管道摩阻损失研究[J].矿业研究与开发, 2008, 28(2):3-6. http://www.cnki.com.cn/Article/CJFDTOTAL-KYYK200802004.htm Zhao L A, Meng Q H. Research on friction loss of slurry with sliding bed in inclined pipeline[J]. Mining Research and Deve-lopment, 2008, 28(2):3-6. http://www.cnki.com.cn/Article/CJFDTOTAL-KYYK200802004.htm
[24] Shook C A, Roco M C. Slurry flow:principles and practice[M]. Oxford:Butterworth-Heinemann, 1991:123-124.
[25] 张士林, 许振良, 邵龙潭.弓形断面管道的紊流速度分布[J].辽宁工程技术大学学报, 2006, 25(1):63-65. http://www.cnki.com.cn/Article/CJFDTOTAL-FXKY200601019.htm Zhang S L, Xu Z L, Shao L T. Water velocity in pipe of arching section[J]. Journal of Liaoning Technical University, 2006, 25(1):63-65. http://www.cnki.com.cn/Article/CJFDTOTAL-FXKY200601019.htm
[26] Hisham A N, Shook C A, Nabil E. Isokinetic probe sampling from slurry pipelines[J]. The Canadian Journal of Chemical Engineering, 1984, 62(2):179-185. DOI: 10.1002/cjce.v62:2
[27] 赵利安, 姜威.粗颗粒高浓度流体管道流动浓度分布研究[J].泥沙研究, 2016, (1):37-41. http://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ201601007.htm Zhao L A, Jiang W. Study on concentration distribution of pipe flow with high concentration coarse particles[J]. Journal of Sediment Research, 2016, (1):37-41. http://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ201601007.htm