Experimental study on cold separation flow in large expansion ratio nozzle
-
摘要: 为研究流动分离条件下气流特性,针对某试验大扩张比喷管,开展了地面冷流试验研究。试验得到了分离点前后测点压强与入口压强的变化规律,并对测点压强数据进行了傅里叶分析。研究结果表明,随着入口压强升高,分离点前测点压强不断升高,分离点后测点压强降低,远离分离点的下游测点压强基本不变,且略低于环境压强;流动分离会导致分离点后压强脉动增大,且脉动主要为50Hz以内的低频脉动,该研究为大扩张比喷管的设计及试验提供了重要参考。Abstract: In order to investigate flow characteristics of the separation flow, cold flow tests were conducted in a solid rocket motor nozzle with a high expansion ratio under the sea level condition. The influences of the inlet pressure on the pressure of test points upstream and downstream the separation location were revealed in the tests and pressure data were analyzed by means of FFT. The results show that the pressure increases for test points upstream the separation location but decreases for test points downstream the separation location. The pressure is steady and right below the ambient pressure for test points downstream and far away from the separation location. Pressure fluctuations become more evident after separation in comparison with that before separation, and the enhanced pressure fluctuations were mainly low-frequency fluctuations in the range of 50Hz. The research has important reference to the designing and testing of the nozzle with a high expansion ratio.
-
Keywords:
- flow separation /
- cold flow test /
- pressure fluctuation
-
-
图 8 流动分离条件下喷管壁面压强变化曲线[15]
Fig. 8 Wall pressure distribution under the separation condition
表 1 测点p4~p6、p11压强数据统计分析
Table 1 Statistic analyses of pressure data of test points p4~p6、p11
Points pmin/kPa pmax/kPa (pmax-pmin)/kPa pstd/kPa p4 45.51 50.27 4.76 0.6642 p5 35.27 37.71 2.44 0.3073 p6 63.66 75.92 12.26 1.5333 p11 84.27 98.88 14.61 2.0707 -
[1] Nave L H, Coffey G A. Sea level side loads in high-area-ratio rocket engines[R]. AIAA-73-1284, 1973.
[2] Terhardt M, Hagemann G. Flow separation and side-load behavior of the Vulcain engine[R]. AIAA-99-2762, 1999.
[3] Yasuhide W, Norio S. LE-7A engine nozzle flow separation phenomenon and the possibility of RSS suppression by the step inside the nozzle[R]. AIAA-2004-4014, 2004.
[4] Antonio M J, Juan S J. Numerical study of the start-up process in an optimized rocket nozzle[J]. Aerospace Science and Technology, 2008, 12 (12): 485-489. https://www.researchgate.net/publication/239407564_Three-dimensional_simulation_of_the_self-oscillating_flow_and_side-loads_in_an_over-expanded_subscale_rocket_nozzle
[5] Vicent L, Heuy D K, Toshiaki S, et al. Numerical investigation of transient side-loads in the start-up process of a rocket nozzle[J]. Journal of Mechanical Science and Technology, 2010, 24 (2): 593-399. DOI: 10.1007/s12206-009-1215-5
[6] Gross A, Weiland C. Numerical simulation of hot gas nozzle flows[J]. Journal of Propulsion and Power, 2004, 20 (5): 879-891. DOI: 10.2514/1.5001
[7] Joseph H R, David M M, Andrew M B. Nozzle side load testing and analysis at Marshall Space Flight Center[R]. AIAA-2009-4856, 2009.
[8] Hagemann G, Frey M. Shock pattern in the plume of rocket nozzles: needs for design consideration[J]. Shock Waves, 2008, 17 (6): 387-395. DOI: 10.1007/s00193-008-0129-y
[9] Nasuti F, Onofri M. Shock structure in separated nozzle flows[J]. Shock Waves, 2009, 19 (13): 229-237. https://www.researchgate.net/publication/225780862_Shock_Structure_in_Separated_Nozzle_Flows
[10] Frey M, Stark R, Ciezki H K, et al. Subscale nozzle testing at the p6.2 nozzle stand[R]. AIAA-2000-3777, 2000.
[11] Kwan W, Stark R. Flow separation phenomena in subscale rocket nozzles[R]. AIAA-2002-4229, 2002.
[12] 王艺杰, 鲍福廷, 杜佳佳. 固体火箭发动机喷管分离流动数值模拟及试验研究[J]. 固体火箭技术, 2010, 33 (4): 406-408. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201004009.htm Wang Y J, Bao F T, Du J J. Numerical simulation and expeniment of flow separation in SRM nozzle[J]. Journal of Solid Rocket Technology. 2010, 33 (4): 406-408. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201004009.htm
[13] 胡海峰, 鲍福廷, 蔡强, 等. 大膨胀比火箭发动机喷管分离流动与气动弹性分析[J]. 固体火箭技术, 2011, 34 (6): 711-716. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201106010.htm Hu H F, Bao F T, Cai Q, ec al. Flow separation and aeroelastic coupling analysis in overexpanded rocket nozzles[J]. Journal of Solid Rocket Technology. 2011, 34 (6): 711-716. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201106010.htm
[14] 杨月诚, 吴朋朋, 高双武, 等. 快速升压过程喷管侧向载荷流固耦合分析[J]. 固体火箭技术. 2012, 35 (4): 463-473. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201204009.htm Yang Y C, Wu P P, Gao S W, et al. Rapid pressurization side load fluid-structure coupled analysis in SRM nozzle[J]. Journal of Solid Rocket Technology. 2012, 35 (4): 463-473. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201204009.htm
[15] Östlund J. Flow processes in rocket engine nozzles with focus on flow separation and side-loads[R]. Technical reports from Royal Institute of Technology Department of Mechanics S-100 44 Stockholm, Sweden, 2002.
-
期刊类型引用(1)
1. 吴超,黄兴. 基于被动引射的大扩张比喷管流动数值研究. 航空科学技术. 2022(10): 31-37 . 百度学术
其他类型引用(3)