常规高超声速风洞的节能方案研究

王铁进, 施岳定, 邓志强, 黄炳修

王铁进, 施岳定, 邓志强, 黄炳修. 常规高超声速风洞的节能方案研究[J]. 实验流体力学, 2016, 30(6): 71-75, 104. DOI: 10.11729/syltlx20150133
引用本文: 王铁进, 施岳定, 邓志强, 黄炳修. 常规高超声速风洞的节能方案研究[J]. 实验流体力学, 2016, 30(6): 71-75, 104. DOI: 10.11729/syltlx20150133
Wang Tiejin, Shi Yueding, Deng Zhiqiang, Huang Bingxiu. Preliminary study on energy-saving layout for conventional hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 71-75, 104. DOI: 10.11729/syltlx20150133
Citation: Wang Tiejin, Shi Yueding, Deng Zhiqiang, Huang Bingxiu. Preliminary study on energy-saving layout for conventional hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 71-75, 104. DOI: 10.11729/syltlx20150133

常规高超声速风洞的节能方案研究

详细信息
    作者简介:

    王铁进(1970-), 男, 河北故城人, 博士, 研究员。研究方向:实验空气动力学, 风洞设备总体和部件技术, 空气动力学应用技术。通信地址:北京7201信箱57分箱(100074)。E-mail:tiej701@163.com

    通讯作者:

    黄炳修, E-mail:hbxiu@163.com

  • 中图分类号: V211.74

Preliminary study on energy-saving layout for conventional hypersonic wind tunnel

  • 摘要: 为了适应高超声速飞行器发展的要求,常规高超声速风洞的建设规模向2m量级发展。但是,随着风洞尺寸的增加,风洞运行所耗费的能源剧增。如何在满足高超声速飞行器试验对风洞尺寸要求的条件下,节省风洞运行时的能量消耗,已成为常规高超声速风洞设计技术发展必须考虑的重要问题。针对这个问题,从常规高超声速风洞气动布局的角度进行了初步探索。首先总结了现有常规高超声速风洞的气动布局;在此基础上,对常规高超声速风洞的能量运行特点,以及不同布局中工作气体余热的处理情况进行了分析;然后结合常规高超声速风洞的运行特点,分析了风洞中可能采用的余热利用技术;最后,提出了一种基于余热利用的常规高超声速风洞布局方案,并对该方案中的关键问题进行了讨论。文中对于该方案的节能情况进行了分析,结果显示,该方案相对于已有的气动布局具有明显的节能效果。
    Abstract: With the development of hypersonic vehicles, the large-scale conventional hypersonic wind tunnel with nozzle exit diameter of 2m order of magnitude is required. However, the energy consumption of the exhausting working air also increases dramatically in the large-scale tunnel. How to save energy while the simulation conditions for the development of hypersonic vehicles are satisfied has become an important problem to be considered in the design of the conventional hypersonic wind tunnel. To solve this problem, the layout of the conventional hypersonic wind tunnel is optimized as follows:first, the aerodynamic layouts of the existing conventional hypersonic wind tunnels are summarized; second, the energy transformation in the conventional hypersonic wind tunnel during its operation is theoretically analyzed, and from the point of view of saving energy also analyzed are the methods used to deal with the exhausting working air in different layouts; third, the possible methods for utilizing the remainder energy of the exhausting working air are discussed; finally, an optimized layout for the large-scale conventional hypersonic wind tunnel is put forward, and the critical technologies to be used in the realization of the layout are discussed. The result of a simple calculation of saved energy in the optimized layout under a typical run condition shows its advantages in saving energy.
  • 图  1   引射-暂冲式常规高超声速风洞气动布局

    Fig.  1   Injector type intermittent aerodynamic layout of conventional hypersonic wind tunnel

    图  2   真空-暂冲式常规高超声速风洞气动布局

    Fig.  2   Vacuum type intermittent aerodynamic layout of conventional hypersonic wind tunnel

    图  3   引射 & 真空-暂冲式常规高超声速风洞气动布局

    Fig.  3   Injector & vacuum type intermittent aerodynamic layout of conventional hypersonic wind tunnel

    图  4   连续式常规高超声速风洞气动布局

    Fig.  4   Continuous aerodynamic layout of conventional hypersonic wind tunnel

    图  5   暂冲-连续混合式常规高超声速风洞气动布局

    Fig.  5   Intermittent & continuous aerodynamic layout of conventional hypersonic wind tunnel

    图  6   常规高超声速风洞运行中能量的变化过程

    Fig.  6   Energy change during operation of hypersonic wind tunnel

    图  7   大尺度常规高超声速风洞的节能气动布局

    Fig.  7   Large scale energy-saving aerodynamic layout of conventional hypersonic wind tunnel

    图  8   用热管传热的换热器的原理

    Fig.  8   Principle of heat exchanger using heat pipe

    表  1   3种典型布局的热能损失位置及量级

    Table  1   Location and magnitude of thermal losses in three typical layouts

    沿程
    损失
    排空
    损失
    冷却
    损失
    附加
    损失
    暂冲-引射式20%80%00
    暂冲-真空式20%080%5%
    连续式20%080%5%
    下载: 导出CSV
  • [1]

    Aeronautical and Space Engineering Board, National Research Council. Review of aeronautical wind tunnel facilities[R]. NASA-CR-183057, 1988.

    [2]

    Marion L, Laster, Dennis M B. A national study for hypersonic facility development[R]. AIAA-94-2473, 1994.

    [3] 战培国. 2025年美国的风洞试验展望[J].实验流体力学, 2010, 24(4):95-96. http://www.syltlx.com/CN/abstract/abstract9849.shtml

    Zhan P G. Prospect of wind tunnel testing of America in 2025[J]. Journal of Experimental in Fluid Mechanics, 2010, 24(4):95-96. http://www.syltlx.com/CN/abstract/abstract9849.shtml

    [4]

    Tirres, Carlos. The future of hypersonic wind tunnels[R]. AIAA-99-0819, 1999.

    [5]

    Aeronautical and Space Engineering Board. National Research Council. Future aerospace ground test facility requirements[R]. 1992.

    [6]

    Strike W. Calibration and performance of the AEDC/VKF tunnel C Mach number 4 aerothermal wind tunnel[R]. AD-A116279, 1982.

    [7]

    Strike W, Coulter S, Mills M. A 1991 calibration of the AEDC hypersonic wind tunnels (nozzle Mach numbers 6, 8, 10)[R]. AIAA-92-5092, 1992.

    [8]

    Haas J, Chamberlin R, Dicus J. New hypersonic facility capability at NASA-Lewis research center[R]. AIAA-89-2534, 1989.

    [9] 范洁川, 樊玉辰, 姚民棐, 等.世界风洞[M].北京:航空工业出版社, 1992.

    Fan J C, Fan Y Z, Yao M F, et al. World wind tunnels[M]. Beijing:Aeronautical Industry Publishing House, 1992.

    [10]

    Katarina D, Jenele G, Sarah K, et al. Aeronautical wind tunnels europe and Asia[R]. Washington D C:The Library of Congress, 2006.

    [11] 赵钦新, 王宇峰, 王学斌, 等.我国余热利用现状与技术进展[J].工业锅炉, 2009, 05:8-15. http://www.cnki.com.cn/Article/CJFDTOTAL-GYGL200905002.htm

    Zhao Q X, Wang Y F, Wang X B, et al. Technical advances and status of China's waste heat utilization[J]. Journal of Industrial Boilers, 2009, 05:8-15. http://www.cnki.com.cn/Article/CJFDTOTAL-GYGL200905002.htm

    [12] 秦叔经, 叶文邦.换热器[M].北京:化学工业出版社, 2003.

    Qin S J, Ye W B. Heat exchanger[M]. Beijing:Chemical Industry Publishing House, 2003.

    [13]

    Zhang H, Zhuang J. Research, development and industrial application of heat pipe technology[J]. Journal of Nanjing Normal University (Engineering and Technology), 2002, 02:1-13. http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJSE200202000.htm

  • 期刊类型引用(5)

    1. 王海峰,展京霞,陈科,陈翔,陈梓钧. 战斗机大迎角气动特性研究技术的发展与应用. 空气动力学学报. 2022(01): 1-25 . 百度学术
    2. 付京来,陈旭立. 6级海况下的某型发射平台回转俯仰耦合动力学研究. 兵工自动化. 2022(07): 68-71 . 百度学术
    3. 孙亚东,李涌. 基于ADAMS的某型发射平台回转俯仰耦合动力学分析. 现代制造技术与装备. 2020(07): 96-98+101 . 百度学术
    4. 付军泉,史志伟,陈杰,周梦贝,吴大卫,潘立军. 一种翼身融合布局飞行器的偏离特性分析. 实验流体力学. 2020(06): 32-37 . 本站查看
    5. 肖中云,刘刚,江雄,王建涛. 飞行器双自由度耦合振荡的数值模拟方法. 航空学报. 2017(11): 123-132 . 百度学术

    其他类型引用(2)

图(8)  /  表(1)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  110
  • PDF下载量:  19
  • 被引次数: 7
出版历程
  • 收稿日期:  2015-11-03
  • 修回日期:  2016-09-24
  • 刊出日期:  2016-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭