留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷诺数对圆柱气动力和流场影响的试验研究

刘庆宽 邵奇 郑云飞 李聪辉 马文勇 刘小兵

刘庆宽, 邵奇, 郑云飞, 等. 雷诺数对圆柱气动力和流场影响的试验研究[J]. 实验流体力学, 2016, 30(4): 7-13. doi: 10.11729/syltlx20150112
引用本文: 刘庆宽, 邵奇, 郑云飞, 等. 雷诺数对圆柱气动力和流场影响的试验研究[J]. 实验流体力学, 2016, 30(4): 7-13. doi: 10.11729/syltlx20150112
Liu Qingkuan, Shao Qi, Zheng Yunfei, et al. Experimental study on Reynolds number effect on aerodynamic pressure and forces of cylinder[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 7-13. doi: 10.11729/syltlx20150112
Citation: Liu Qingkuan, Shao Qi, Zheng Yunfei, et al. Experimental study on Reynolds number effect on aerodynamic pressure and forces of cylinder[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 7-13. doi: 10.11729/syltlx20150112

雷诺数对圆柱气动力和流场影响的试验研究

doi: 10.11729/syltlx20150112
基金项目: 

国家自然科学基金项目 51378323

国家自然科学基金项目 51108280

国家自然科学基金项目 51308359

河北省杰出青年科学基金 E2014210138

详细信息
    通讯作者:

    刘庆宽(1971-),男,河北保定人,博士,教授,博士生导师。研究方向:桥梁与结构的风荷载、风致振动与控制。通信地址:石家庄铁道大学风工程研究中心(050043)。E-mail:lqk@stdu.edu.cn

  • 中图分类号: U441+.3

Experimental study on Reynolds number effect on aerodynamic pressure and forces of cylinder

  • 摘要: 通过刚性模型测压风洞试验,研究了圆柱的气动阻力、气动升力系数和风压系数随雷诺数的变化规律,从流场分布的角度分析了气动力变化的原因,并研究了雷诺数影响下的流场在圆柱轴向的相关性。结果表明:在亚临界雷诺数区域,在时间平均上流场沿模型两侧呈对称分布,雷诺数对平均阻力系数和流场影响较小,平均升力系数基本为零。在临界雷诺数区域,随着特定区域大负压区的出现,流场不再对称,出现不容忽视的平均升力和脉动升力。在超临界雷诺数区域,随着对称侧大负压区的出现,流场恢复对称状态,平均升力基本消失。雷诺数对流场的轴向相关性有显著的影响。在雷诺数较低时(亚临界区域),卡门涡在轴向上的尺度相对较大,而随着雷诺数的提高,该尺度逐渐减小,各断面流场的相关性降低。
  • 图  1  风洞结构示意图

    Figure  1.  Sketch of wind tunnel

    图  2  低速试验段模型安装及测点布置图

    Figure  2.  Sketch of installation and pressure tap arrangement of test model in low speed test section

    图  3  高速试验段模型安装及测点布置图

    Figure  3.  Sketch of installation and pressure tap arrangement of test model in high speed test section

    图  4  模型气动力计算图

    Figure  4.  Aerodynamic force calculation diagram of test model

    图  5  气动力系数随雷诺数的变化曲线

    Figure  5.  Curve of aerodynamic force coefficient with Re

    图  6  亚临界雷诺数区域模型风压系数周向分布(Re=2.05×105)

    Figure  6.  Wind pressure coefficient distribution around test model in subcritical regime(Re=2.05×105)

    图  7  亚临界雷诺数区域模型瞬时风压周向分布向量图(Re=2.05×105)

    Figure  7.  Instantaneous wind pressure distribution vector diagram around test model in subcritical regime(Re=2.05×105)

    图  8  亚临界雷诺数区域模型驻点位置摆动图(Re=2.05×105)

    Figure  8.  Stagnation point position of test model in subcritical regime(Re=2.05×105)

    图  9  临界雷诺数区域模型风压系数周向分布(Re=3.55×105)

    Figure  9.  Wind pressure coefficient distribution around test model in critical regime(Re=3.55×105)

    图  10  临界雷诺数区域模型瞬时风压周向分布向量图(Re=3.55×105)

    Figure  10.  Instantaneous wind pressure distribution vector diagram around test model in critical regime(Re=3.55×105)

    图  11  超临界区域模型风压系数周向分布(Re=3.79×105)

    Figure  11.  Wind pressure coefficient distribution around test model in supercritical regime(Re=3.79×105)

    图  12  超临界雷诺数区域模型瞬时风压周向分布向量图(Re=3.79×105)

    Figure  12.  Instantaneous wind pressure distribution vector diagram around test model in supercritical regime(Re=3.79×105)

    图  13  相关系数同雷诺数和无量纲轴向间距的关系

    Figure  13.  Relation between correlation coefficient,Re,and dimensionless axial spaceing

    表  1  低速试验段模型试验工况

    Table  1.   Test cases in low speed test section

    风速范围/(m·s-1)风速步长/(m·s-1)Re/104
    5~132.09.3~24.3
    13~210.3/0.424.3~39.2
    下载: 导出CSV

    表  2  高速试验段模型试验工况

    Table  2.   Test cases in high speed test section

    风速范围/(m·s-1)风速步长/(m·s-1)Re/104
    13.7 ~ 40.92.710~30
    40.9 ~ 43.71.330~32
    下载: 导出CSV

    表  3  相关系数与相关程度对照表

    Table  3.   Table of correlation coefficient and degree

    相关系数0~±0.30±0.30~±0.50±0.50~±0.80±0.80~±1.00
    相关程度微相关实相关显著相关高度相关
    下载: 导出CSV
  • [1] 裴岷山, 张喜刚, 朱斌, 等. 斜拉桥的拉索纵桥向风荷载计算方法研究[J]. 中国工程科学, 2009, 11(3): 26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200903004.htm

    Pei M S, Zhang X G, Zhu B, et al. Study on longitudinal wind load calculation method of cables for cable-stayed bridge[J]. Engineering Sciences, 2009, 11(3): 26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200903004.htm
    [2] Roshko A. Experiments on the flow past a circle cylinder at very high Reynolds numbers[J]. Journal of Fluids Mechanics, 1961, 10: 345-356. doi: 10.1017/S0022112061000950
    [3] Bearman P W. On vortex shedding from a circle cylinder in the critical Reynolds number regime[J]. Journal of Fluids Mechanics, 1968, 37: 577-585.
    [4] 崔冰, 曾宪武. 南京二桥南汊大桥主桥结构设计[C]//中国土木工程学会桥梁及结构工程学会第十三届年会论文集, 北京: 人民交通出版社, 1998: 264-272.

    Cui B, Zeng X W. Structure design of the nancha bridge of nanjing yangtse river bridge[C]//Proceedings of the 13th National Conference on Bridge and Structure Engineering, Beijing: China Communications Press, 1998: 264-272.
    [5] 张忠义, 刘聪. 南京长江第二大桥桥位风速观测及设计风速的计算[J]. 气象科学, 2000, 20(2): 200-205. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200002011.htm

    Zhang Z Y, Liu C. Calculation of desighing wind velocity and wind observation at the Nanjing 2nd Yangtse River Bridge[J]. Scientia Meteorologica Sinica, 2000, 20(2): 200-205. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200002011.htm
    [6] 刘庆宽, 郑云飞, 白雨润, 等. 斜拉索风雨振气动抑振措施的参数优化[J]. 振动与冲击, 2015, 34(8): 31-35. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201508006.htm

    Liu Q K, Zheng Y F, Bai Y R, et al. Parametric optimization of aerodynamic and vibration measure for rain-wind induced vibration of cables[J]. Journal of Vibration and Shock, 2015, 34(8): 31-35. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201508006.htm
    [7] 刘庆宽, 王毅, 郑云飞, 等. 水线-雷诺数效应-斜拉索振动关系的试验研究[J]. 工程力学, 2012, 29(11): 257-265.

    Liu Q K, Wang Y, Zheng Y F, et al. Experimental study on the relation of water rivulet-Reynolds number effect-cable vibration[J]. Engineering Mechanics, 2012, 29(11): 257-265.
    [8] 刘庆宽, 张峰, 马文勇, 等. 斜拉索雷诺数效应与风致振动的试验研究[J]. 振动与冲击, 2011, 30(12): 114-119. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201112026.htm

    Liu Q K, Zhang F, Ma W Y, et al. Tests for Reynolds number effect and wind-induced vibration of stay cables[J]. Journal of Vibration and Shock, 2011, 30(12): 114-119. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201112026.htm
    [9] Chen S, Irwin P A, Jakobsen J B, et al. Divergent motion of cables exposed to skewed wind[C]//Proceedings of the 5th International Symposium on Cable Dynamics. Santa Margherita Ligure, Italy, 2003: 271-278.
    [10] Matsumoto M, Yagi T, Shima T, et al. The effect of the Reynolds number in aerodynamic cable vibration of cable-stayed bridge[C]//Proceedings of the 19th National Symposium on Wind Engineering. Tokyo, Japan, 2006: 507-512.
    [11] 刘庆宽. 多功能大气边界层风洞的设计与建设[J]. 实验流体力学, 2011, 25(3): 66-70. http://syltlx.cars.org.cn/CN/article/searchArticle.do#

    Liu Q K. Aerodynamic and structure design of multifunction boundary-layer wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3): 66-70. http://syltlx.cars.org.cn/CN/article/searchArticle.do#
    [12] 马文勇, 刘庆宽, 刘小兵, 等. 风洞试验中测压管路信号畸变及修正研究[J]. 实验流体力学, 2013, 27(4): 71-77. http://syltlx.cars.org.cn/CN/article/searchArticle.do#

    Ma W Y, Liu Q K, Liu X B, et al. Study on correction and distortion effects caused by tubing systems of pressure measurements in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4): 71-77. http://syltlx.cars.org.cn/CN/article/searchArticle.do#
    [13] Hackett J E. Tunnel-induced gradients and their effect on drag[J]. American Institute of Aeronautics and Astronautics, 1996, 34(12): 2575-2581. doi: 10.2514/3.13441
    [14] Cooper K R, Mercker E, Wiedemann J. Improved blockage corrections for bluff bodies in closed and open wind tunnels[C]//Wind Engineering into 21st Century: Proceedings of the 10th International Conference on Wind Engineering. Copenhagen, Denmark, 1999: 1627-1634.
    [15] JTG/T D60-01—2004. 公路桥梁抗风设计规范[S]. 北京: 人民交通出版社, 2004.

    JTG/T D60-01—2004. Wind-resistant design specification for highway bridges[S]. Beijing: China Communications Press, 2004.
    [16] Poulin S, Larsen A. Drag loading of circular cylinders inclined in the along-wind direction[J]. Journal of Wind Eingineering and Industrial Aerodynamics, 2007, 95(9/10/11): 1350-1363. http://cn.bing.com/academic/profile?id=2032194263&encoded=0&v=paper_preview&mkt=zh-cn
    [17] 王卫华, 李明水, 陈忻. 斜拉索的阻力系数研究[J]. 空气动力学学报, 2005, 23(3): 389-393. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200503023.htm

    Wang W H, Li M S, Chen X. Investigation on drag coefficients of stay-cables[J]. Acta Aerodynamica Sinica, 2005, 23(3): 389-393. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200503023.htm
    [18] 林志兴, 杨立波, 李文勃. 斜拉索顺桥向风阻系数的试验研究[J]. 郑州大学学报: 工学版, 2005, 26(1): 38-41. http://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY200501010.htm

    Lin Z X, Yang L B, Li W B. Experimental study on drag coefficients of stay-cables corresponding to wind direction along the bridge central line[J]. Journal of Zhengzhou University: Engineering Science Edition, 2005, 26(1): 38-41. http://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY200501010.htm
    [19] Farell C, Blessm A J. On critical flow around smooth circular cylinders[J]. Journal of Fluid Mechanics, 1983, 136: 375-391. doi: 10.1017/S0022112083002190
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  7
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-28
  • 修回日期:  2016-04-28
  • 刊出日期:  2016-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日