留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2015年  第29卷  第5期

基础研究及应用
后退式微型后缘装置对翼型气动特性影响的实验研究
夏骏, 代钦
2015, (5): 1-7,25. doi: 10.11729/syltlx20140148
摘要:
介绍了装有后退式微型后缘装置(Rearward Mini-TED)的 NACA23012翼型在低雷诺数条件下的表面压力分布、气动力和 PIV 速度场的风洞实验结果,并与 NACA23012原型翼的对应测量结果进行了对比分析,以探讨 Mini-TED 装置对翼型流场、气动特性产生的影响。本实验风速为15m/s,以弦长为特征量的雷诺数为 Re ≈1.3×105,翼型表面压力分布采用测压孔和压力传感器测量,通过积分获得翼型升力和压差阻力,并利用尾耙测量翼型受到的总阻力。结果表明,后退式 Mini-TED 翼型改变了翼型周围的流场速度分布和尾流流动结构,导致上翼面吸力和下翼面的压力升高,使翼型升力增加,但压差阻力也增加。同时发现后退式 Mini-TED 翼型使前驻点位置后移,加快了上翼面的流动速度,后缘分离受到抑制。
基于最大似然法的风洞自由飞试验气动力参数辨识技术研究
张天姣, 钱炜祺, 何开锋, 汪清
2015, (5): 8-14. doi: 10.11729/syltlx20140116
摘要:
采用最大似然辨识算法对风洞自由飞试验数据进行气动力参数辨识,可以避免直接对测量数据进行二阶数值微分造成的气动参数的严重误差。详细介绍了风洞自由飞试验气动力参数辨识的原理及方法,分别通过仿真和实测数据算例对方法进行了具体说明和实现。算例辨识结果表明将气动参数辨识技术应用于风洞自由飞试验,是获取飞行器气动特性的有效途径之一。力导数可辨识性较低,受测量精度影响较大;力矩导数辨识结果与工程软件计算值接近,相对误差在30%以内,基本满足工程精度要求。同时,增加试验数据测量点数、提高数据测量精准度、安装过载测量设备、提升模型加工工艺水平,均有利于提高辨识结果的可信度。
激波风洞驻点热流测量误差机理及其不确定度研究
曾磊, 桂业伟, 王安龄, 秦峰, 张昊元
2015, (5): 15-25. doi: 10.11729/syltlx20140135
摘要(135) PDF(10)
摘要:
详细分析了测热传感器安装后驻点区曲率变化对局部流场变化和热流变化的影响规律,并根据不同传感器的类型和敏感元件的组成情况,研究给出了修正方法和修正系数;研究了传感器表面温升与热流之间的相互影响关系,对热流实测结果进行了修正。同时,研究了来流流场的微小变化对热流的影响,分析了传感器组成尺寸、人为读数、传感器重复使用等随机因素对热流测量的影响,并结合随机误差分析理论给出了不确定度的评定方法,计算得到了某次热流试验中的测量不确定度。并由此给出了对传感器制作和测热试验方法的改进建议。该文的研究内容有利于进一步提高热流测量精度,为高超声速飞行器的研制提供参考。
不同湿度下的云雾-不饱和空气湍流混合实验研究
刘晓霞, 卢志明, 黄永祥, 周全, 刘宇陆
2015, (5): 26-31,44. doi: 10.11729/syltlx20150017
摘要:
本实验设计建造了一个80×80×100cm3的室内云雾腔,对不同环境湿度下的云雾-不饱和空气混合过程的湍流特征进行了实验研究,利用 PIV 技术,获得了混合过程中的速度场,得到了湍动能、脉动速度二阶结构函数、泰勒微尺度等物理量。结果表明:该实验测得的湍流泰勒微尺度为 mm 量级;云雾-不饱和空气混合过程的脉动速度场表现出明显的各向异性,随着不饱和环境湿度的增加脉动速度概率密度函数在尾部越来越偏离标准高斯分布;横向结构函数和纵向结构函数比值明显偏离基于均匀各向同性湍流的理论值。
基于狭缝湍射流多尺度特征研究的机舱条缝送风口内结构的优化设计
葛文涛, 郭勇, 代申, 姜楠, 刘俊杰
2015, (5): 32-37. doi: 10.11729/syltlx20140151
摘要:
针对 MD-82真实客机座舱内现有的壁面条缝型送风口流场平均流速沿座舱轴向分布的不均匀性,提出了一种送风口条缝形芯内结构的设计,使条缝型送风口处气流混合更加均匀,湍流发展更充分,平均流速沿座舱轴向分布更加均匀。并利用热线测速技术,精细测量条缝型送风口流场进行验证。从吹风感舒适性要求出发,利用子波分析,对条缝型送风口流场不同位置的瞬时速度时间序列信号作多尺度湍涡成分分析。结果表明:加装了条缝形芯内结构的条缝送风口流场的气流脉动特征频率始终维持在21.83Hz 左右,而导致人最不舒适的空气速度脉动频率为0.2~0.6Hz,从而证实加装了条缝形芯内结构的条缝送风口流场的气流提高了人体感觉的舒适性。
三级压缩锥导乘波体设计技术与实验分析
吕侦军, 王旭东, 季卫栋, 王江峰
2015, (5): 38-44. doi: 10.11729/syltlx20150003
摘要:
为了充分发挥乘波体布局作为吸气式高超声速飞行器前体的预压缩功能,基于吻切锥原理发展了一种多级压缩乘波体设计方法。通过该设计方法设计得到了三级压缩锥导乘波体。设计状态下的数值模拟结果显示,该乘波体产生的3道锥面激波按照设计预期相交于底部截面上。该三级压缩锥导乘波体的上表面采用膨胀式上表面布局设计并在底部与进气道相连,将进气道唇口取为设计条件下3道锥面激波相交的位置,由此获得了进行风洞实验的三级压缩锥导乘波体前体/进气道布局。对该型三级压缩锥导乘波体前体/进气道布局开展了数值模拟与高超声速风洞实验的对比校验,在流场波系结构方面得到了相吻合的结果,表明了设计方法的可靠性。
测量技术
基于 iSIGHT 的风洞应变天平优化设计方法研究
向光伟, 王杰, 史玉杰, 易国庆
2015, (5): 45-49,59. doi: 10.11729/syltlx20150013
摘要:
天平设计的关键在于天平结构的优化,在满足设计要求的前提下,尽量提高天平刚度,避免应力集中,减小各测量分量之间的相互干扰,以提高设计质量。天平优化设计是一个多目标问题,无论利用解析方法还是有限元仿真方法,设计分析过程通常需要丰富的经验,即使耗费大量时间也很难获得全局最优解。以6分量杆式应变天平为研究对象,提出了分级和分步优化策略,介绍了基于 iSIGHT 平台的实现方法。通过试验设计(DOE)筛选出对优化目标影响较大的设计变量,然后建立天平优化设计近似参数化模型。在 iSIGHT 中通过集成 UG、AN-SYS 和 EXCEL 等软件建立自动优化流程。以参数化三维结构有限元仿真分析方法为基础,利用 iSIGHT 提供的优化算法,实现优化设计自动化,大大节省了设计成本,提高了天平设计质量和效率。
小展弦比飞翼布局高速标模测力天平研制
史玉杰, 黄勇, 田正波
2015, (5): 50-54. doi: 10.11729/syltlx20150015
摘要:
小展弦比飞翼布局的纵横向气动特性差异大,对天平测量与校准提出了较大挑战。专用天平针对其气动载荷特点和气动力试验需求,通过对常规片梁和柱梁组合的组合测量元件进行改进,提高了横向载荷的测量灵敏度,使得组合元件满足天平除轴向力外的5个分量的灵敏度测量需要。天平选用横Π型梁作为轴向力的测量梁,降低了其他分量对轴向力的干扰。在天平校准时通过施加纵向冲击振动的工程方法完成天平加载头的安全拆卸并应用于模型的拆卸。研制的天平已完成了相关风洞测力试验。
再入弹头小不对称俯仰气动特性测量技术研究
赵俊波, 付增良, 梁彬, 张石玉, 高清
2015, (5): 55-59. doi: 10.11729/syltlx20150027
摘要:
再入弹头小不对称俯仰力矩的精确测量一直是风洞试验领域的一个难题。设计了轴承铰接式自由振动系统,以同时测量模型的动稳定性导数和静力矩系数。滚动轴承提供系统在俯仰通道的自由度,同时在弹性梁断裂时保护模型不受破坏;可拆卸弹性梁可根据试验要求更改结构尺寸,调整系统振动频率及应变片输出信号的质量。利用本系统在Φ500mm 高超声速风洞进行了模型风洞试验,试验结果重复性及试验稳定性好,静态力矩系数测量结果达到10-6量级,证明了系统的精确性与可靠性。
圆柱尾流场的 Tomo-PIV 测量
许相辉, 蒋甲利, 牛中国, 宁继鹏, 刘捷
2015, (5): 60-64. doi: 10.11729/syltlx20150022
摘要(174) PDF(15)
摘要:
层析粒子图像测速(Tomo-PIV)是一种先进的光学测量技术,能够定量获取三维体视流场结构,可作为诸如湍流、多涡系干扰等三维复杂流场的有效测量手段。为了实现该技术在风洞模型测量中的应用,研究了工程应用和数据处理方法。在中航工业气动院 FL-5风洞,选取12mm 直径的圆柱体作为试验模型,应用 Tomo-PIV 技术测量了圆柱三维尾流场,通过解决体光源引入、示踪粒子投放和现场标定等关键技术以及对数据处理方法的研究,成功获得了圆柱体后方典型的三维卡门涡流场。测量区域约95mm×70mm×8.5mm,粒子图像分辨率达到20 pixels/mm,包含数万个速度矢量数据,实现了 Tomo-PIV 的风洞试验验证。
潜艇标模阻力试验的不确定度分析
史圣哲, 郑亚雄
2015, (5): 65-71. doi: 10.11729/syltlx20150002
摘要:
为了改善拖曳水池的试验精度,对一条4.5m 潜艇标模 SUBOFF 进行重复拖曳阻力试验。本文参照 IT-TC 推荐规程中试验流体动力学不确定度分析规范,对由偏差极限引起的不确定度将由潜艇标模的几个外形、速度、阻力、以及温度、密度和粘性这几个测量系统分别进行估算;通过6次重复潜艇标模阻力试验结果的标准差分析,得到了摩擦阻力系数、总阻力系数的精密度极限;最后对该模型的摩擦阻力系数、总阻力系数进行了不确定度分析。结果表明:由温度引起的运动粘性系数的偏差极限占到摩擦阻力系数偏差极限的97%;总阻力系数的偏差极限98%来自于湿表面积的偏差极限;随着试验速度的提高,总阻力系数和剩余阻力系数的总不确定度降低。
实验设备及方法
高速风洞连续变速压颤振试验技术研究
郭洪涛, 闫昱, 余立, 吕彬彬, 杜宁
2015, (5): 72-77. doi: 10.11729/syltlx20150061
摘要:
针对高速暂冲式风洞阶梯变速压颤振试验用时长、耗气量大和试验模型有效使用寿命短等缺点,开展了高速暂冲式风洞连续变速压颤振试验技术研究,解决了定 Ma 数连续变速压流场控制技术与连续变速压工况下的颤振试验数据处理技术等难题。具体技术措施是:在2.4m×2.4m 暂冲式跨声速风洞中设计了基于运动函数的定Ma 数线性变总压控制策略,使 Ma 数控制精度达到了0.005以内且速压无超调,实现了流场控制目标;采用 Pick-Hold 方法构建颤振边界的亚临界预测判据,并根据预测判据近似于正态分布的特点,基于数理统计的参数估计法来减小预测判据的散布度,从而提高颤振边界亚临界预测的准确性。风洞验证试验结果表明,该试验技术达到了工程实用化水平,不仅能够取得与阶梯变速压颤振试验技术一致的结果,还能极大地节省耗气量,经济效益显著。
声衬试验段环境下航空声学定位试验技术研究
陈宝, 李周复, 谭啸, 李元首, 邵天双, 张雪, 姜涛
2015, (5): 78-83. doi: 10.11729/syltlx20150035
摘要:
针对在风洞闭口试验段对 C919、MA700等民机进行航空声学定位试验的需求,首先采用声衬试验段、波束形成麦克风相位阵列算法、对角移除反卷积方法和声压级积分方法等措施,解决闭口试验段存在的背景噪声较高、气流对麦克风测量干扰问题,然后采用 MA60飞机模型进行了验证性风洞试验。风洞试验结果表明,声衬试验段有利于在闭口试验段内安装传声器相位阵列、传声器线阵等测量设备,同时背景噪声较常规闭口试验段显著降低,降噪量达5~10dB;MA60飞机模型航空声学定位试验结果量级合理、规律正确,主要声源集中在襟翼位置。这表明,在 FL-9风洞闭口试验段建立了航空声学试验环境和噪声源定位试验技术,可以承担机体气动噪声定位、降噪技术验证等民机型号研制急需的航空声学试验。
自适应遗传 PID 算法在风洞风速控制中的应用
尼文斌, 董金刚, 刘书伟, 贺丽慧, 付增良
2015, (5): 84-89. doi: 10.11729/syltlx20150016
摘要(241) PDF(12)
摘要:
风速控制是风洞的核心控制部分,风速控制系统的优劣直接影响风洞性能指标,为了完成 FDxx 风洞的风速控制系统,设计了一种基于自适应在线遗传算法的 PID 参数整定方法,在风洞气源资源有限的情况下,快速建立流场,确保流场稳定时间。首先对控制参数进行联合编码,在种群个体进化前期采用锦标赛精英保留策略,后期采用基于轮盘赌非线性选择方法,加快算法收敛速度,同时避免了算法过早陷入局部最优,交叉选用单点交叉,变异采用均匀取反法,动态调整过程为了减小甚至避免超调,采用误差绝对值及误差和误差变化率加权方式设计目标函数,并采取了惩罚措施,即一旦产生超调,将超调量作为最优指标的一项,现场测试验证了算法的可靠性及实用性。
平流层螺旋桨等离子体流动控制地面实验方法
陈庆亚, 田希晖, 车学科, 聂万胜, 周思引
2015, (5): 90-96. doi: 10.11729/syltlx20140140
摘要:
根据螺旋桨雷诺相似准则和等离子体射流相似准则,提出了一种基于螺旋桨叶素理论,利用地面实验设备开展平流层螺旋桨等离子体流动控制研究的实验方法。首先根据螺旋桨几何参数和运动参数计算叶素微段来流速度和迎角,然后根据螺旋桨雷诺相似准则确定常压翼型风洞模拟平流层叶素流动的吹风参数,最后根据等离子体射流雷诺相似准则,确定激励器和激励电源参数模拟平流层等离子体射流并评估其流动控制效果。利用该方法研究了20km 高度 S1223翼型螺旋桨的等离子体流动控制效果,实验表明:飞艇以5~20m/s 的速度前进时,SD-BD 激励电压峰-峰值13.6kV,频率10kHz 时,诱导的等离子体射流使螺旋桨300r/min 时推力最大可提高10.9%,600r/min 时推力反而减小了0.52%~1.7%。

重要公告

www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

请广大读者、作者相互转告,广为宣传!

感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


《实验流体力学》编辑部

2021年8月13日