单摆动自由度斑海豹胡须模型的目标识别性能

Target recognition performance of a single swing degree-of-freedom spotted seal whisker model

  • 摘要: 斑海豹胡须因其独特的几何外形而具备很好的水下目标识别和跟踪能力,为开发新型传感器提供了很好的仿生学原型。本文制作了具有单摆动自由度的海豹胡须传感器,设置三种背景流速和七种待识别柱体,开展了系列的水槽实验,获取了不同工况下海豹胡须模型的角位移数据。用角位移数据训练了基于卷积神经网络的机器学习模型,并分析了该模型的目标识别性能和机理。结果表明:用角位移数据训练出的机器学习模型在大多数情况下能够准确识别上游柱体的形状;在对数据进行预处理时,调整训练样本长度和低通滤波截止频率会对识别结果产生影响;增加样本长度会提升学习效果,当长度增加到300时,训练出的模型的识别效果最佳,继续增加样本长度,识别效果无明显变化;当低通滤波截止频率大于10 Hz后,学习效果无显著变化,表明角位移信号的有效信息的频率基本小于10 Hz;基于斑海豹胡须模型的角位移信号开发相关的传感器具有可行性。

     

    Abstract: The unique geometric morphology of harbor seal whiskers enables exceptional underwater target recognition and tracking. This biomimetic prototype offers significant potential for novel sensor development. A seal whisker-inspired sensor was fabricated with single-degree-of-freedom swing capability. Flume experiments tested three background flow velocities and seven upstream cylinder types. Angular displacement data were recorded for the whisker model across all test conditions. Convolutional Neural Networks (CNN) trained on this displacement data achieved accurate shape identification for most upstream cylinders. Adjusting training sample length and setting low-pass filter cutoff frequency during preprocessing impacted recognition results. Increasing sample length improved performance, peaking at length 300. Further length increases provided negligible gains. Low-pass filter cutoff frequencies beyond 10 Hz caused no significant change in effectiveness, confirming that useful angular displacement signal components reside primarily below 10 Hz. Development of whisker-inspired sensors using angular displacement signals proves feasible.

     

/

返回文章
返回