Turn off MathJax
Article Contents
WANG F, ZHANG Y B, XI H D. Experimental study on the anisotropy in von Kármán swirling flow system[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230159
Citation: WANG F, ZHANG Y B, XI H D. Experimental study on the anisotropy in von Kármán swirling flow system[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230159

Experimental study on the anisotropy in von Kármán swirling flow system

doi: 10.11729/syltlx20230159
  • Received Date: 2023-11-17
  • Accepted Date: 2023-12-19
  • Rev Recd Date: 2023-12-13
  • Available Online: 2024-01-19
  • The degree of anisotropy in the Von Kármán Swirling (VKS) flow system was experimentally investigated. The three-dimensional velocity near the center of VKS was measured by tomographic PIV and two methods were adopted to calculate the second order Velocity Structure Function (VSF2) in order to study the scale-by-scale anisotropy. It is found that the fluctuation velocity is highly homogeneous. However, the Root-Mean-Square (RMS) velocity in the vertical direction is one-third times smaller than that in the horizontal direction, which characterizes the large-scale anisotropy. This large-scale anisotropy has left its fingerprint on the small scales, which is reflected by the observation that the scale-space distribution of VSF2 is isotropic in the horizontal plane while it is not in the vertical plane. Besides, this anisotropy diminishes as scale decreases, consistent with the local isotropy assumption proposed by Kolmogorov. This experimental study provides new insights into turbulent flows.
  • loading
  • [1]
    POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000.
    [2]
    SCHLICHTING H, GERSTEN K. Fundamentals of boundary–layer theory[M]//Boundary-Layer Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016: 29-49. .
    [3]
    TAYLOR G I. Statistical theory of turbulence[J]. Proceedings of the Royal Society of London Series A - Mathematical and Physical Sciences, 1935, 151(873): 421–444. doi: 10.1098/rspa.1935.0158
    [4]
    BATCHELOR G K. The theory of homogeneous turbu-lence[M]. Cambridge: Cambridge University Press, 1953.
    [5]
    ORSZAG S A, PATTERSON Jr G S. Numerical simulation of three-dimensional homogeneous isotropic turbulence[J]. Physical Review Letters, 1972, 28(2): 76–79. doi: 10.1103/physrevlett.28.76
    [6]
    ISHIHARA T, GOTOH T, KANEDA Y. Study of high–Reynolds number isotropic turbulence by direct numerical simulation[J]. Annual Review of Fluid Mechanics, 2009, 41: 165–180. doi: 10.1146/annurev.fluid.010908.165203
    [7]
    KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1991, 434(1890): 9–13. doi: 10.1098/rspa.1991.0075
    [8]
    FRISCH U, KOLMOGOROV A N. Turbulence: the legacy of A. N. Kolmogorov[M]. Cambridge: Cambridge University Press, 1995.
    [9]
    MONIN A S, YAGLOM A M. Statistical fluid mechanics, volume Ⅱ: mechanics of turbulence[M]. New York: Dover Publications, 2013.
    [10]
    ZANDBERGEN P J, DIJKSTRA D. Von Kármán swirling flows[J]. Annual Review of Fluid Mechanics, 1987, 19: 465–491. doi: 10.1146/annurev.fl.19.010187.002341
    [11]
    DOUADY S, COUDER Y, BRACHET M E. Direct observation of the intermittency of intense vorticity filaments in turbulence[J]. Physical Review Letters, 1991, 67(8): 983–986. doi: 10.1103/physrevlett.67.983
    [12]
    VOTH G A, SATYANARAYAN K, BODENSCHATZ E. Lagrangian acceleration measurements at large Reynolds numbers[J]. Physics of Fluids, 1998, 10(9): 2268–2280. doi: 10.1063/1.869748
    [13]
    VOTH G A, LA PORTA A, CRAWFORD A M, et al. Measurement of particle accelerations in fully developed turbulence[J]. Journal of Fluid Mechanics, 2002, 469: 121–160. doi: 10.1017/s0022112002001842
    [14]
    BOURGOIN M, OUELLETTE N T, XU H T, et al. The role of pair dispersion in turbulent flow[J]. Science, 2006, 311(5762): 835–838. doi: 10.1126/science.1121726
    [15]
    TOMS B A. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers[C]//Proc. of In. Cong. On Rheology, 1948.
    [16]
    WHITE C M, MUNGAL M G. Mechanics and prediction of turbulent drag reduction with polymer additives[J]. Annual Review of Fluid Mechanics, 2008, 40: 235–256. doi: 10.1146/annurev.fluid.40.111406.102156
    [17]
    CRAWFORD A M, MORDANT N, XU H T, et al. Fluid acceleration in the bulk of turbulent dilute polymer solutions[J]. New Journal of Physics, 2008, 10(12): 123015. doi: 10.1088/1367-2630/10/12/123015
    [18]
    OUELLETTE N T, XU H T, BODENSCHATZ E. Bulk turbulence in dilute polymer solutions[J]. Journal of Fluid Mechanics, 2009, 629: 375–385. doi: 10.1017/s0022112009006697
    [19]
    XI H D, BODENSCHATZ E, XU H T. Elastic energy flux by flexible polymers in fluid turbulence[J]. Physical Review Letters, 2013, 111(2): 024501. doi: 10.1103/physrevlett.111.024501
    [20]
    ZHANG Y B, BODENSCHATZ E, XU H T, et al. Experimental observation of the elastic range scaling in turbulent flow with polymer additives[J]. Science Advances, 2021, 7(14): eabd3525. doi: 10.1126/sciadv.abd3525
    [21]
    陈正云, 张清福, 潘翀, 等. 超疏水旋转圆盘气膜层减阻的实验研究[J]. 实验流体力学, 2021, 35(3): 52–59. doi: 10.11729/syltlx20200025

    CHEN Z Y, ZHANG Q F, PAN C, et al. An experimental study on drag reduction of superhydrophobic rotating disk with air plastron[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 52–59. doi: 10.11729/syltlx20200025
    [22]
    OUELLETTE N T, XU H T, BOURGOIN M, et al. Small-scale anisotropy in Lagrangian turbulence[J]. New Journal of Physics, 2006, 8(6): 102. doi: 10.1088/1367-2630/8/6/102
    [23]
    SREENIVASAN K R. On the universality of the Kolmogorov constant[J]. Physics of Fluids, 1995, 7(11): 2778–2784. doi: 10.1063/1.868656
    [24]
    YEUNG P K, ZHOU Y. Universality of the Kolmogorov constant in numerical simulations of turbulence[J]. Physical Review E, 1997, 56(2): 1746–1752. doi: 10.1103/physreve.56.1746
    [25]
    MONCHAUX R, RAVELET F, DUBRULLE B, et al. Properties of steady states in turbulent axisymmetric flows[J]. Physical Review Letters, 2006, 96(12): 124502. doi: 10.1103/physrevlett.96.124502
    [26]
    KNUTSEN A N, BAJ P, LAWSON J M, et al. The inter-scale energy budget in a von Kármán mixing flow[J]. Journal of Fluid Mechanics, 2020, 895: A11. doi: 10.1017/jfm.2020.277
    [27]
    TAYLOR M A, KURIEN S, EYINK G L. Recovering isotropic statistics in turbulence simulations: the Kolmo-gorov 4/5th law[J]. Physical Review E, 2003, 68(2): 026310. doi: 10.1103/PhysRevE.68.026310
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (81) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return