Turn off MathJax
Article Contents
HU R F. Scaling-law-based decomposition and Reynolds-number effects of wall-bounded turbulent motions[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 1-15 doi: 10.11729/syltlx20230152
Citation: HU R F. Scaling-law-based decomposition and Reynolds-number effects of wall-bounded turbulent motions[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 1-15 doi: 10.11729/syltlx20230152

Scaling-law-based decomposition and Reynolds-number effects of wall-bounded turbulent motions

doi: 10.11729/syltlx20230152
  • Received Date: 2023-11-06
  • Accepted Date: 2024-01-04
  • Rev Recd Date: 2023-12-12
  • Available Online: 2024-04-15
  • Wall-bounded turbulence widely exists in nature and engineering, the in-depth study and understanding of which can help to develop new computational models and control methodology. Turbulence has multi-scale characteristics, and the anisotropy caused by the wall makes the multi-scale motions of wall turbulence more complex and challenging. This paper discusses and summarizes the scaling-law-based decomposition methods for wall-bounded turbulent motions, including inner-outer decomposition and outer decomposition. The inner-outer decomposition is based on the Reynolds-number independence of the inner turbulent motions, and the outer decomposition is based on the scaling laws of Townsend’s attached eddy hypothesis. Finally, the Reynolds number effect of the statistical characteristics of the wall turbulent motions after decomposition is discussed, and two critical Reynolds numbers are given for the inner turbulent motions to reach Reynolds number independence and for the appearance of the outer turbulent motions.
  • loading
  • [1]
    MARUSIC I, MCKEON B J, MONKEWITZ P A, et al. Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues[J]. Physics of Fluids, 2010, 22(6): 065103. doi: 10.1063/1.3453711
    [2]
    SMITS A J, MCKEON B J, MARUSIC I. High–Reynolds number wall turbulence[J]. Annual Review of Fluid Mechanics, 2011, 43: 353–375. doi: 10.1146/annurev-fluid-122109-160753
    [3]
    JIMÉNEZ J. Coherent structures in wall-bounded turbulence[J]. Journal of Fluid Mechanics, 2018, 842: P1. doi: 10.1017/jfm.2018.144
    [4]
    LEE C B, JIANG X Y. Flow structures in transitional and turbulent boundary layers[J]. Physics of Fluids, 2019, 31(11): 111301. doi: 10.1063/1.5121810
    [5]
    郑晓静, 王国华. 高雷诺数壁湍流的研究进展及挑战[J]. 力学进展, 2020, 50: 202001. doi: 10.6052/1000-0992-19-009

    ZHENG X J, WANG G H. Progresses and challenges of high Reynolds number wall-bounded turbulence[J]. Advances in Mechanics, 2020, 50: 202001. doi: 10.6052/1000-0992-19-009
    [6]
    LIU H Y, ZHENG X J. Large-scale structures of wall-bounded turbulence in single- and two-phase flows: advancing understanding of the atmospheric surface layer during sandstorms[J]. Flow, 2021, 1: E5. doi: 10.1017/flo.2021.6
    [7]
    SMITS A J. Batchelor Prize Lecture: measurements in wall-bounded turbulence[J]. Journal of Fluid Mechanics, 2022, 940: A1. doi: 10.1017/jfm.2022.83
    [8]
    CANTWELL B J. Organized motion in turbulent flow[J]. Annual Review of Fluid Mechanics, 1981, 13: 457–515. doi: 10.1146/annurev.fl.13.010181.002325
    [9]
    HUSSAIN A K M F. Coherent structures—reality and myth[J]. The Physics of Fluids, 1983, 26(10): 2816–2850. doi: 10.1063/1.864048
    [10]
    ROBINSON S. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics, 1991, 23: 601–639. doi: 10.1146/annurev.fluid.23.1.601
    [11]
    ADRIAN R J. Hairpin vortex organization in wall turbulence[J]. Physics of Fluids, 2007, 19(4): 041301. doi: 10.1063/1.2717527
    [12]
    许春晓. 壁湍流相干结构和减阻控制机理[J]. 力学进展, 2015, 45: 201504. doi: 10.6052/1000-0992-15-006

    XU C X. Coherent structures and drag-reduction mechanism in wall turbulence[J]. Advances in Mechanics, 2015, 45: 201504. doi: 10.6052/1000-0992-15-006
    [13]
    KLINE S J, REYNOLDS W C, SCHRAUB F A, et al. The structure of turbulent boundary layers[J]. Journal of Fluid Mechanics, 1967, 30(4): 741–773. doi: 10.1017/s0022112067001740
    [14]
    SMITH C R, METZLER S P. The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer[J]. Journal of Fluid Mechanics, 1983, 129: 27–54. doi: 10.1017/s0022112083000634
    [15]
    JEONG J, HUSSAIN F, SCHOPPA W, et al. Coherent structures near the wall in a turbulent channel flow[J]. Journal of Fluid Mechanics, 1997, 332: 185–214. doi: 10.1017/s0022112096003965
    [16]
    HEAD M R, BANDYOPADHYAY P. New aspects of turbulent boundary-layer structure[J]. Journal of Fluid Mechanics, 1981, 107(11): 297–338. doi: 10.1017/s0022112081001791
    [17]
    ELSINGA G E, POELMA C, SCHRÖDER A, et al. Tracking of vortices in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2012, 697: 273–295. doi: 10.1017/jfm.2012.60
    [18]
    WANG C Y, GAO Q, WANG J J, et al. Experimental study on dominant vortex structures in near-wall region of turbulent boundary layer based on tomographic particle image velocimetry[J]. Journal of Fluid Mechanics, 2019, 874: 426–454. doi: 10.1017/jfm.2019.412
    [19]
    ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387(1): 353–396. doi: 10.1017/S002211209900467X
    [20]
    ADRIAN R J, MEINHART C D, TOMKINS C D. Vortex organization in the outer region of the turbulent boundary layer[J]. Journal of Fluid Mechanics, 422: 1-54. doi: 10.1017/S0022112000001580
    [21]
    CHRISTENSEN K T, ADRIAN R J. Statistical evidence of hairpin vortex packets in wall turbulence[J]. Journal of Fluid Mechanics, 2001, 431: 433–443. doi: 10.1017/s0022112001003512
    [22]
    DENNIS D J C, NICKELS T B. Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets[J]. Journal of Fluid Mechanics, 2011, 673: 180–217. doi: 10.1017/s0022112010006324
    [23]
    JODAI Y, ELSINGA G E. Experimental observation of hairpin auto-generation events in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2016, 795: 611–633. doi: 10.1017/jfm.2016.153
    [24]
    DENG S C, PAN C, WANG J J, et al. On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number[J]. Journal of Fluid Mechanics, 2018, 844: 635–668. doi: 10.1017/jfm.2018.160
    [25]
    MEINHART C D, ADRIAN R J. On the existence of uniform momentum zones in a turbulent boundary layer[J]. Physics of Fluids, 1995, 7(4): 694–696. doi: 10.1063/1.868594
    [26]
    DE SILVA C M, HUTCHINS N, MARUSIC I. Uniform momentum zones in turbulent boundary layers[J]. Journal of Fluid Mechanics, 2016, 786: 309–331. doi: 10.1017/jfm.2015.672
    [27]
    WANG Y F, HUANG Y J, ZHANG J H, et al. Uniform momentum zones on the smooth and superhydrophobic surfaces in a turbulent boundary layer[J]. Acta Mechanica Sinica, 2023, 39(8): 322467. doi: 10.1007/s10409-023-22467-x
    [28]
    WU X H, MOIN P, WALLACE J M, et al. Transitional-turbulent spots and turbulent-turbulent spots in boundary layers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): E5292–E5299. doi: 10.1073/pnas.1704671114
    [29]
    ZHAO Y M, XIONG S Y, YANG Y, et al. Sinuous distortion of vortex surfaces in the lateral growth of turbulent spots[J]. Physical Review Fluids, 2018, 3(7): 074701. doi: 10.1103/physrevfluids.3.074701
    [30]
    WU X H. New insights into turbulent spots[J]. Annual Review of Fluid Mechanics, 2023, 55: 45–75. doi: 10.1146/annurev-fluid-120720-021813
    [31]
    LEE C B, WU J Z. Transition in wall-bounded flows[J]. Applied Mechanics Reviews, 2008, 61(3): 030802. doi: 10.1115/1.2909605
    [32]
    KIM K C, ADRIAN R J. Very large-scale motion in the outer layer[J]. Physics of Fluids, 1999, 11(2): 417–422. doi: 10.1063/1.869889
    [33]
    GUALA M, HOMMEMA S E, ADRIAN R J. Large-scale and very-large-scale motions in turbulent pipe flow[J]. Journal of Fluid Mechanics, 2006, 554: 521–542. doi: 10.1017/s0022112006008871
    [34]
    BALAKUMAR B J, ADRIAN R J. Large- and very-large-scale motions in channel and boundary-layer flows[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 2007, 365(1852): 665-681. DOI: 10.1098/rsta.2006.1940.
    [35]
    HUTCHINS N, MARUSIC I. Evidence of very long meandering features in the logarithmic region of turbulent boundary layers[J]. Journal of Fluid Mechanics, 2007, 579: 1–28. doi: 10.1017/s0022112006003946
    [36]
    WANG G H, ZHENG X J. Very large scale motions in the atmospheric surface layer: a field investigation[J]. Journal of Fluid Mechanics, 2016, 802: 464–489. doi: 10.1017/jfm.2016.439
    [37]
    CAMERON S M, NIKORA V I, STEWART M T. Very-large-scale motions in rough-bed open-channel flow[J]. Journal of Fluid Mechanics, 2017, 814: 416–429. doi: 10.1017/jfm.2017.24
    [38]
    HAMILTON J M, KIM J, WALEFFE F. Regeneration mechanisms of near-wall turbulence structures[J]. Journal of Fluid Mechanics, 1995, 287: 317–348. doi: 10.1017/s0022112095000978
    [39]
    WALEFFE F. On a self-sustaining process in shear flows[J]. Physics of Fluids, 1997, 9(4): 883–900. doi: 10.1063/1.869185
    [40]
    JIMÉNEZ J, PINELLI A. The autonomous cycle of near-wall turbulence[J]. Journal of Fluid Mechanics, 1999, 389: 335–359. doi: 10.1017/s0022112099005066
    [41]
    KAWAHARA G, KIDA S. Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst[J]. Journal of Fluid Mechanics, 2001, 449: 291–300. doi: 10.1017/s0022112001006243
    [42]
    PANTON R L. Overview of the self-sustaining mechanisms of wall turbulence[J]. Progress in Aerospace Sciences, 2001, 37(4): 341–383. doi: 10.1016/s0376-0421(01)00009-4
    [43]
    SCHOPPA W, HUSSAIN F. Coherent structure generation in near-wall turbulence[J]. Journal of Fluid Mechanics, 2002, 453: 57–108. doi: 10.1017/s002211200100667x
    [44]
    HWANG Y, COSSU C. Self-sustained process at large scales in turbulent channel flow[J]. Physical Review Letters, 2010, 105(4): 044505. doi: 10.1103/PhysRevLett.105.044505
    [45]
    FARRELL B F, IOANNOU P J. Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow[J]. Journal of Fluid Mechanics, 2012, 708: 149–196. doi: 10.1017/jfm.2012.300
    [46]
    COSSU C, HWANG Y. Self-sustaining processes at all scales in wall-bounded turbulent shear flows[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 2017, 375(2089): 20160088. doi: 10.1098/rsta.2016.0088
    [47]
    BAE H J, LOZANO-DURÁN A, MCKEON B J. Nonlinear mechanism of the self-sustaining process in the buffer and logarithmic layer of wall-bounded flows[J]. Journal of Fluid Mechanics, 2021, 914: A3. doi: 10.1017/jfm.2020.857
    [48]
    WU X H, MOIN P. Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer[J]. Journal of Fluid Mechanics, 2009, 630: 5–41. doi: 10.1017/S0022112009006624
    [49]
    LEE J H, SUNG H J. Very-large-scale motions in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2011, 673: 80–120. doi: 10.1017/s002211201000621x
    [50]
    BALTZER J R, ADRIAN R J, WU X H. Structural organization of large and very large scales in turbulent pipe flow simulation[J]. Journal of Fluid Mechanics, 2013, 720: 236–279. doi: 10.1017/jfm.2012.642
    [51]
    LEE J, LEE J H, CHOI J Il, et al. Spatial organization of large- and very-large-scale motions in a turbulent channel flow[J]. Journal of Fluid Mechanics, 2014, 749: 818–840. doi: 10.1017/jfm.2014.249
    [52]
    SCHLATTER P, LI Q, ÖRLÜ R, et al. On the near-wall vortical structures at moderate Reynolds numbers[J]. European Journal of Mechanics - B/Fluids, 2014, 48: 75–93. doi: 10.1016/j.euromechflu.2014.04.011
    [53]
    EITEL-AMOR G, ÖRLÜ R, SCHLATTER P, et al. Hairpin vortices in turbulent boundary layers[J]. Physics of Fluids, 2015, 27(2): 025108. doi: 10.1063/1.4907783
    [54]
    WANG Y S, HUANG W X, XU C X. On hairpin vortex generation from near-wall streamwise vortices[J]. Acta Mechanica Sinica, 2015, 31(2): 139–152. doi: 10.1007/s10409-015-0415-8
    [55]
    CHEN X, CHUNG Y M, WAN M P. Uniform-momentum zones in a turbulent pipe flow[J]. Journal of Fluid Mechanics, 2020, 884: A25. doi: 10.1017/jfm.2019.947
    [56]
    CHEN X, CHUNG Y M, WAN M P. The uniform-momentum zones and internal shear layers in turbulent pipe flows at Reynolds numbers up to Reτ = 1000[J]. International Journal of Heat and Fluid Flow, 2021, 90: 108817. doi: 10.1016/j.ijheatfluidflow.2021.108817
    [57]
    ZHANG W Y, HUANG W X, XU C X. Very large-scale motions in turbulent flows over streamwise traveling wavy boundaries[J]. Physical Review Fluids, 2019, 4(5): 054601. doi: 10.1103/physrevfluids.4.054601
    [58]
    MOTOORI Y, GOTO S. Hairpin vortices in the largest scale of turbulent boundary layers[J]. International Journal of Heat and Fluid Flow, 2020, 86: 108658. doi: 10.1016/j.ijheatfluidflow.2020.108658
    [59]
    RICHARDSON L F. The supply of energy from and to atmospheric eddies[J]. Proceedings of the Royal Society of London. Series A, 97: 354-373. doi: 10.1098/rspa.1920.0039.
    [60]
    KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J]. Akademiia Nauk SSSR Doklady, 1941, 30: 301–305.
    [61]
    OBUKHOV A. On the distribution of energy in the spectrum of turbulent flow[J]. Akademiia Nauk SSSR Doklady, 1941, 32: 22.
    [62]
    SHE Z S. Universal law of cascade of turbulent fluctuations[J]. Progress of Theoretical Physics Supplement, 1998, 130: 87–102. doi: 10.1143/PTPS.130.87
    [63]
    GOTO S. A physical mechanism of the energy cascade in homogeneous isotropic turbulence[J]. Journal of Fluid Mechanics, 2008, 605: 355–366. doi: 10.1017/s0022112008001511
    [64]
    XIAO Z, WAN M, CHEN S, et al. Physical mechanism of the inverse energy cascade of two-dimensional turbulence: a numerical investigation[J]. Journal of Fluid Mechanics, 2009, 619: 1–44. doi: 10.1017/s0022112008004266
    [65]
    WANG J C, YANG Y T, SHI Y P, et al. Cascade of kinetic energy in three-dimensional compressible turbulence[J]. Physical Review Letters, 2013, 110(21): 214505. doi: 10.1103/PhysRevLett.110.214505
    [66]
    CARDESA J I, VELA-MARTÍN A, JIMÉNEZ J. The turbulent cascade in five dimensions[J]. Science, 2017, 357(6353): 782–784. doi: 10.1126/science.aan7933
    [67]
    ALEXAKIS A, BIFERALE L. Cascades and transitions in turbulent flows[J]. Physics Reports, 2018, 767-769: 1–101. doi: 10.1016/j.physrep.2018.08.001
    [68]
    XIE J H, BÜHLER O. Exact third-order structure functions for two-dimensional turbulence[J]. Journal of Fluid Mechanics, 2018, 851: 672–686. doi: 10.1017/jfm.2018.528
    [69]
    YAO J, HUSSAIN F. A physical model of turbulence cascade via vortex reconnection sequence and avalanche[J]. Journal of Fluid Mechanics, 2019, 883: A51. doi: 10.1017/jfm.2019.905
    [70]
    CARBONE M, BRAGG A D. Is vortex stretching the main cause of the turbulent energy cascade?[J]. Journal of Fluid Mechanics, 2020, 883: R2. doi: 10.1017/jfm.2019.923
    [71]
    JOHNSON P L. Energy transfer from large to small scales in turbulence by multiscale nonlinear strain and vorticity interactions[J]. Physical Review Letters, 2020, 124(10): 104501. doi: 10.1103/PhysRevLett.124.104501
    [72]
    YAN Z, LI X L, YU C P, et al. Dual channels of helicity cascade in turbulent flows[J]. Journal of Fluid Mechanics, 2020, 894: R2. doi: 10.1017/jfm.2020.289
    [73]
    JOHNSON P L. On the role of vorticity stretching and strain self-amplification in the turbulence energy cascade[J]. Journal of Fluid Mechanics, 2021, 922: A3. doi: 10.1017/jfm.2021.490
    [74]
    BENZI R, TOSCHI F. Lectures on turbulence[J]. Physics Reports, 2023, 1021: 1–106. doi: 10.1016/j.physrep.2023.05.001
    [75]
    DOMARADZKI J A, LIU W, HÄRTEL C, et al. Energy transfer in numerically simulated wall-bounded turbulent flows[J]. Physics of Fluids, 1994, 6(4): 1583–1599. doi: 10.1063/1.868272
    [76]
    MARATI N, CASCIOLA C M, PIVA R. Energy cascade and spatial fluxes in wall turbulence[J]. Journal of Fluid Mechanics, 2004, 521: 191–215. doi: 10.1017/s0022112004001818
    [77]
    BOLOTNOV I A, LAHEY R T Jr, DREW D A, et al. Spectral analysis of turbulence based on the DNS of a channel flow[J]. Computers & Fluids, 2010, 39(4): 640–655. doi: 10.1016/j.compfluid.2009.11.001
    [78]
    HONG J R, KATZ J, MENEVEAU C, et al. Coherent structures and associated subgrid-scale energy transfer in a rough-wall turbulent channel flow[J]. Journal of Fluid Mechanics, 2012, 712: 92–128. doi: 10.1017/jfm.2012.403
    [79]
    MIZUNO Y. Spectra of energy transport in turbulent channel flows for moderate Reynolds numbers[J]. Journal of Fluid Mechanics, 2016, 805: 171–187. doi: 10.1017/jfm.2016.564
    [80]
    CHO M, HWANG Y, CHOI H. Scale interactions and spectral energy transfer in turbulent channel flow[J]. Journal of Fluid Mechanics, 2018, 854: 474–504. doi: 10.1017/jfm.2018.643
    [81]
    LEE M, MOSER R D. Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number[J]. Journal of Fluid Mechanics, 2019, 860: 886–938. doi: 10.1017/jfm.2018.903
    [82]
    DONG S W, HUANG Y X, YUAN X X, et al. The coherent structure of the kinetic energy transfer in shear turbulence[J]. Journal of Fluid Mechanics, 2020, 892: A22. doi: 10.1017/jfm.2020.195
    [83]
    WANG W K, PAN C, WANG J J. Energy transfer structures associated with large-scale motions in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2021, 906: A14. doi: 10.1017/jfm.2020.777
    [84]
    WANG H P, YANG Z X, WU T, et al. Coherent structures associated with interscale energy transfer in turbulent channel flows[J]. Physical Review Fluids, 2021, 6(10): 104601. doi: 10.1103/physrevfluids.6.104601
    [85]
    MOTOORI Y, GOTO S. Hierarchy of coherent structures and real-space energy transfer in turbulent channel flow[J]. Journal of Fluid Mechanics, 2021, 911: A27. doi: 10.1017/jfm.2020.1025
    [86]
    PIOMELLI U, CABOT W H, MOIN P, et al. Subgrid-scale backscatter in turbulent and transitional flows[J]. Physics of Fluids A:Fluid Dynamics, 1991, 3(7): 1766–1771. doi: 10.1063/1.857956
    [87]
    HÄRTEL C, KLEISER L, UNGER F, et al. Subgrid-scale energy transfer in the near-wall region of turbulent flows[J]. Physics of Fluids, 1994, 6(9): 3130–3143. doi: 10.1063/1.868137
    [88]
    CIMARELLI A, DE ANGELIS E, JIMÉNEZ J, et al. Cascades and wall-normal fluxes in turbulent channel flows[J]. Journal of Fluid Mechanics, 2016, 796: 417–436. doi: 10.1017/jfm.2016.275
    [89]
    KAWATA T, ALFREDSSON P H. Inverse interscale transport of the Reynolds shear stress in plane Couette turbulence[J]. Physical Review Letters, 2018, 120(24): 244501. doi: 10.1103/PhysRevLett.120.244501
    [90]
    HAMBA F. Inverse energy cascade and vortical structure in the near-wall region of turbulent channel flow[J]. Physical Review Fluids, 2019, 4(11): 114609. doi: 10.1103/physrevfluids.4.114609
    [91]
    HUTCHINS N, MARUSIC I. Large-scale influences in near-wall turbulence[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 2007, 365(1852): 647-664. DOI: 10.1098/rsta.2006.1942.
    [92]
    MATHIS R, HUTCHINS N, MARUSIC I. Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers[J]. Journal of Fluid Mechanics, 2009, 628: 311–337. doi: 10.1017/s0022112009006946
    [93]
    SCHLATTER P, ÖRLÜ R. Quantifying the interaction between large and small scales in wall-bounded turbulent flows: a note of caution[J]. Physics of Fluids, 2010, 22(5): 1–4. doi: 10.1063/1.3432488
    [94]
    GUALA M, METZGER M, MCKEON B J. Interactions within the turbulent boundary layer at high Reynolds number[J]. Journal of Fluid Mechanics, 2011, 666: 573–604. doi: 10.1017/s0022112010004544
    [95]
    MATHIS R, MARUSIC I, HUTCHINS N, et al. The relationship between the velocity skewness and the amplitude modulation of the small scale by the large scale in turbulent boundary layers[J]. Physics of Fluids, 2011, 23(12): 121702. doi: 10.1063/1.3671738
    [96]
    GANAPATHISUBRAMANI B, HUTCHINS N, MONTY J P, et al. Amplitude and frequency modulation in wall turbulence[J]. Journal of Fluid Mechanics, 2012, 712: 61–91. doi: 10.1017/jfm.2012.398
    [97]
    JACOBI I, MCKEON B J. Phase relationships between large and small scales in the turbulent boundary layer[J]. Experiments in Fluids, 2013, 54(3): 1481. doi: 10.1007/s00348-013-1481-y
    [98]
    AGOSTINI L, LESCHZINER M A. On the influence of outer large-scale structures on near-wall turbulence in channel flow[J]. Physics of Fluids, 2014, 26(7): 075107. doi: 10.1063/1.4890745
    [99]
    DUVVURI S, MCKEON B J. Triadic scale interactions in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2015, 767: R4. doi: 10.1017/jfm.2015.79
    [100]
    ANDERSON W. Amplitude modulation of streamwise velocity fluctuations in the roughness sublayer: evidence from large-eddy simulations[J]. Journal of Fluid Mechanics, 2016, 789: 567–588. doi: 10.1017/jfm.2015.744
    [101]
    ZHANG C, CHERNYSHENKO S I. Quasisteady quasihomogeneous description of the scale interactions in near-wall turbulence[J]. Physical Review Fluids, 2016, 1: 014401. doi: 10.1103/physrevfluids.1.014401
    [102]
    PATHIKONDA G, CHRISTENSEN K T. Inner–outer interactions in a turbulent boundary layer overlying complex roughness[J]. Physical Review Fluids, 2017, 2(4): 044603. doi: 10.1103/physrevfluids.2.044603
    [103]
    SALESKY S T, ANDERSON W. Buoyancy effects on large-scale motions in convective atmospheric boundary layers: implications for modulation of near-wall processes[J]. Journal of Fluid Mechanics, 2018, 856: 135–168. doi: 10.1017/jfm.2018.711
    [104]
    HOWLAND M F, YANG X I A. Dependence of small-scale energetics on large scales in turbulent flows[J]. Journal of Fluid Mechanics, 2018, 852: 641–662. doi: 10.1017/jfm.2018.554
    [105]
    YAO Y C, HUANG W X, XU C X. Amplitude modulation and extreme events in turbulent channel flow[J]. Acta Mechanica Sinica, 2018, 34(1): 1–9. doi: 10.1007/s10409-017-0687-2
    [106]
    DOGAN E, ÖRLÜ R, GATTI D, et al. Quantification of amplitude modulation in wall-bounded turbulence[J]. Fluid Dynamics Research, 2019, 51(1): 011408. doi: 10.1088/1873-7005/aaca81
    [107]
    LIU H Y, WANG G H, ZHENG X J. Amplitude modulation between multi-scale turbulent motions in high-Reynolds-number atmospheric surface layers[J]. Journal of Fluid Mechanics, 2019, 861: 585–607. doi: 10.1017/jfm.2018.906
    [108]
    TANG Z Q, JIANG N, ZHENG X B, et al. Local dynamic perturbation effects on amplitude modulation in turbulent boundary layer flow based on triple decomposition[J]. Physics of Fluids, 2019, 31(2): 025120. doi: 10.1063/1.5083224
    [109]
    IACOBELLO G, RIDOLFI L, SCARSOGLIO S. Large-to-small scale frequency modulation analysis in wall-bounded turbulence via visibility networks[J]. Journal of Fluid Mechanics, 2021, 918: A13. doi: 10.1017/jfm.2021.279
    [110]
    TANG Z Q, MA X Y, JIANG N, et al. Local dynamic perturbation effects on the scale interactions in wall turbulence[J]. Journal of Turbulence, 2021, 22(3): 208–230. doi: 10.1080/14685248.2020.1864388
    [111]
    TANG Z Q, CHEN L T, FAN Z Y, et al. Cross-term events of scale-decomposed skewness factor in turbulent boundary layer at moderate Reynolds number[J]. Physics of Fluids, 2021, 33(5): 055124. doi: 10.1063/5.0050048
    [112]
    WANG H P, GAO Q. A study of inner-outer interactions in turbulent channel flows by interactive POD[J]. Theoretical and Applied Mechanics Letters, 2021, 11(1): 100222. doi: 10.1016/j.taml.2021.100222
    [113]
    ZHENG X B, BELLANI G, MASCOTELLI L, et al. Inter-scale interaction in pipe flows at high Reynolds numbers[J]. Experimental Thermal and Fluid Science, 2022, 131: 110529. doi: 10.1016/j.expthermflusci.2021.110529
    [114]
    LIU H Y, HE X B, ZHENG X J. Amplitude modulation in particle-laden atmospheric surface layers[J]. Journal of Fluid Mechanics, 2023, 957: A14. doi: 10.1017/jfm.2022.1092
    [115]
    ANDREOLLI A, GATTI D, VINUESA R, et al. Separating large-scale superposition and modulation in turbulent channels[J]. Journal of Fluid Mechanics, 2023, 958: A37. doi: 10.1017/jfm.2023.103
    [116]
    LI M G, BAARS W J, MARUSIC I, et al. Quantifying inner-outer interactions in noncanonical wall-bounded flows[J]. Physical Review Fluids, 2023, 8(8): 084602. doi: 10.1103/physrevfluids.8.084602
    [117]
    DESHPANDE R, CHANDRAN D, SMITS A J, et al. On the relationship between manipulated inter-scale phase and energy-efficient turbulent drag reduction[J]. Journal of Fluid Mechanics, 2023, 972: A12. doi: 10.1017/jfm.2023.715
    [118]
    POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000.
    [119]
    LEE M, MOSER R D. Direct numerical simulation of turbulent channel flow up to Re τ ≈ 5200[J]. Journal of Fluid Mechanics, 2015, 774: 395–415. doi: 10.1017/jfm.2015.268
    [120]
    WANG H P, WANG S Z, HE G W. The spanwise spectra in wall-bounded turbulence[J]. Acta Mechanica Sinica, 2018, 34(3): 452–461. doi: 10.1007/s10409-017-0731-2
    [121]
    JIMÉNEZ J, MOIN P. The minimal flow unit in near-wall turbulence[J]. Journal of Fluid Mechanics, 1991, 225: 213–240. doi: 10.1017/s0022112091002033
    [122]
    MARUSIC I, BAARS W J, HUTCHINS N. Scaling of the streamwise turbulence intensity in the context of inner-outer interactions in wall turbulence[J]. Physical Review Fluids, 2017, 2(10): 100502. doi: 10.1103/PhysRevFluids.2.100502
    [123]
    CHEN X, SREENIVASAN K R. Reynolds number scaling of the peak turbulence intensity in wall flows[J]. Journal of Fluid Mechanics, 2021, 908: R3. doi: 10.1017/jfm.2020.991
    [124]
    MONTY J P, HUTCHINS N, NG H C H, et al. A comparison of turbulent pipe, channel and boundary layer flows[J]. Journal of Fluid Mechanics, 2009, 632: 431–442. doi: 10.1017/s0022112009007423
    [125]
    MARUSIC I, MATHIS R, HUTCHINS N. Predictive model for wall-bounded turbulent flow[J]. Science, 2010, 329(5988): 193–196. doi: 10.1126/science.1188765
    [126]
    MATHIS R, HUTCHINS N, MARUSIC I. A predictive inner-outer model for streamwise turbulence statistics in wall-bounded flows[J]. Journal of Fluid Mechanics, 2011, 681: 537–566. doi: 10.1017/jfm.2011.216
    [127]
    BAARS W J, HUTCHINS N, MARUSIC I. Spectral stochastic estimation of high-Reynolds-number wall-bounded turbulence for a refined inner-outer interaction model[J]. Physical Review Fluids, 2016, 1(5): 054406. doi: 10.1103/physrevfluids.1.054406
    [128]
    HOYAS S, JIMÉNEZ J. Scaling of the velocity fluctuations in turbulent channels up to Re τ = 2003[J]. Physics of Fluids, 2006, 18(1): 011702. doi: 10.1063/1.2162185
    [129]
    WANG L M, HU R F, ZHENG X J. A scaling improved inner–outer decomposition of near-wall turbulent motions[J]. Physics of Fluids, 2021, 33(4): 045120. doi: 10.1063/5.0046502
    [130]
    TOWNSEND A A. The structure of turbulent shear flow[M]. 2rd ed. Cambridge, New York: Cambridge University Press: 1976.
    [131]
    PERRY A E, CHONG M S. On the mechanism of wall turbulence[J]. Journal of Fluid Mechanics, 1982, 119: 173–217. doi: 10.1017/s0022112082001311
    [132]
    MARUSIC I, MONTY J P. Attached eddy model of wall turbulence[J]. Annual Review of Fluid Mechanics, 2019, 51: 49–74. doi: 10.1146/annurev-fluid-010518-040427
    [133]
    HU R F, DONG S W, VINUESA R. General attached eddies: scaling laws and cascade self-similarity[J]. Physical Review Fluids, 2023, 8(4): 044603. doi: 10.1103/physrevfluids.8.044603
    [134]
    JIMÉNEZ J, HOYAS S. Turbulent fluctuations above the buffer layer of wall-bounded flows[J]. Journal of Fluid Mechanics, 2008, 611: 215–236. doi: 10.1017/s0022112008002747
    [135]
    HULTMARK M, VALLIKIVI M, BAILEY S C C, et al. Turbulent pipe flow at extreme Reynolds numbers[J]. Physical Review Letters, 2012, 108(9): 094501. doi: 10.1103/PhysRevLett.108.094501
    [136]
    MARUSIC I, MONTY J P, HULTMARK M, et al. On the logarithmic region in wall turbulence[J]. Journal of Fluid Mechanics, 2013, 716: R3. doi: 10.1017/jfm.2012.511
    [137]
    MENEVEAU C, MARUSIC I. Generalized logarithmic law for high-order moments in turbulent boundary layers[J]. Journal of Fluid Mechanics, 2013, 719: R1. doi: 10.1017/jfm.2013.61
    [138]
    YANG X I A, MARUSIC I, MENEVEAU C. Moment generating functions and scaling laws in the inertial layer of turbulent wall-bounded flows[J]. Journal of Fluid Mechanics, 2016, 791: R2. doi: 10.1017/jfm.2016.82
    [139]
    MEHREZ A, PHILIP J, YAMAMOTO Y, et al. Pressure and spanwise velocity fluctuations in turbulent channel flows: Logarithmic behavior of moments and coherent structures[J]. Physical Review Fluids, 2019, 4(4): 044601. doi: 10.1103/physrevfluids.4.044601
    [140]
    BAARS W J, MARUSIC I. Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 2. Integrated energy and A1[J]. Journal of Fluid Mechanics, 2020, 882: A26. doi: 10.1017/jfm.2019.835
    [141]
    HU R F, YANG X I A, ZHENG X J. Wall-attached and wall-detached eddies in wall-bounded turbulent flows[J]. Journal of Fluid Mechanics, 2020, 885: A30. doi: 10.1017/jfm.2019.980
    [142]
    DESHPANDE R, MONTY J P, MARUSIC I. Active and inactive components of the streamwise velocity in wall-bounded turbulence[J]. Journal of Fluid Mechanics, 2021, 914: A5. doi: 10.1017/jfm.2020.884
    [143]
    WANG L W, PAN C, WANG J J, et al. Statistical signatures of u component wall-attached eddies in proper orthogonal decomposition modes of a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2022, 944: A26. doi: 10.1017/jfm.2022.495
    [144]
    YU M, XU C X, CHEN J Q, et al. Spectral decomposition of wall-attached/detached eddies in compressible and incompressible turbulent channel flows[J]. Physical Review Fluids, 2022, 7(5): 054607. doi: 10.1103/physrevfluids.7.054607
    [145]
    PUCCIONI M, CALAF M, PARDYJAK E R, et al. Identification of the energy contributions associated with wall-attached eddies and very-large-scale motions in the near-neutral atmospheric surface layer through wind LiDAR measurements[J]. Journal of Fluid Mechanics, 2023, 955: A39. doi: 10.1017/jfm.2022.1080
    [146]
    PERRY A E, MARUŠIĆ I. A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis[J]. Journal of Fluid Mechanics, 1995, 298: 361–388. doi: 10.1017/s0022112095003351
    [147]
    WOODCOCK J D, MARUSIC I. The statistical behaviour of attached eddies[J]. Physics of Fluids, 2015, 27(1): 015104. doi: 10.1063/1.4905301
    [148]
    MARUSIC I, HEUER W D C. Reynolds number invariance of the structure inclination angle in wall turbulence[J]. Physical Review Letters, 2007, 99(11): 114504. doi: 10.1103/PhysRevLett.99.114504
    [149]
    LIU H Y, BO T L, LIANG Y R. The variation of large-scale structure inclination angles in high Reynolds number atmospheric surface layers[J]. Physics of Fluids, 2017, 29(3): 035104. doi: 10.1063/1.4978803
    [150]
    DESHPANDE R, MONTY J P, MARUSIC I. Streamwise inclination angle of large wall-attached structures in turbulent boundary layers[J]. Journal of Fluid Mechanics, 2019, 877: R4. doi: 10.1017/jfm.2019.663
    [151]
    HUANG H J. Refining the connection between the logarithmic velocity profile and energy spectrum based on eddy’s inclination angle[J]. Physical Review Fluids, 2019, 4(11): 114702. doi: 10.1103/physrevfluids.4.114702
    [152]
    CHENG C, SHYY W, FU L. Streamwise inclination angle of wall-attached eddies in turbulent channel flows[J]. Journal of Fluid Mechanics, 2022, 946: A49. doi: 10.1017/jfm.2022.657
    [153]
    HU R F, ZHENG X J, DONG S W. Extracting discrete hierarchies of Townsend’s wall-attached eddies[J]. Physics of Fluids, 2022, 34(6): 061701. doi: 10.1063/5.0090712
    [154]
    董思卫, 程诚, 陈坚强, 等. 基于聚类连通法的湍流拟序结构研究进展[J]. 力学进展, 2021, 51(4): 792–830. doi: 10.6052/1000-0992-20-032

    DONG S W, CHENG C, CHEN J Q, et al. A review of the study on coherent structures in turbulence by the clustering method[J]. Advances in Mechanics, 2021, 51(4): 792–830. doi: 10.6052/1000-0992-20-032
    [155]
    WANG L M, HU R F. Inner-outer decomposition of wall shear stress fluctuations in turbulent channels[J]. Theoretical and Applied Mechanics Letters, 2022, 12(2): 100337. doi: 10.1016/j.taml.2022.100337
    [156]
    CHEN X, SREENIVASAN K R. Law of bounded dissipation and its consequences in turbulent wall flows[J]. Journal of Fluid Mechanics, 2022, 933: A20. doi: 10.1017/jfm.2021.1052
    [157]
    HU R F, ZHENG X J. Energy contributions by inner and outer motions in turbulent channel flows[J]. Physical Review Fluids, 2018, 3(8): 084607. doi: 10.1103/physrevfluids.3.084607
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (35) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return