Turn off MathJax
Article Contents
CHENG X Q, FAN Z Y, TANG Z Q, et al. Experimental investigation of the spatial distribution of uniform momentum zones in wall-bounded flow[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230132
Citation: CHENG X Q, FAN Z Y, TANG Z Q, et al. Experimental investigation of the spatial distribution of uniform momentum zones in wall-bounded flow[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230132

Experimental investigation of the spatial distribution of uniform momentum zones in wall-bounded flow

doi: 10.11729/syltlx20230132
  • Received Date: 2023-10-19
  • Accepted Date: 2023-11-17
  • Rev Recd Date: 2023-11-15
  • Available Online: 2023-12-14
  • Experiments are carried out in a water tunnel to measure the velocity field in the streamwise-wall-normal plane by particle image velocimetry with a large field of view, in order to investigate the spatial distribution of the uniform momentum zones in the turbulent boundary layer. Through calculating the probability density function of the measured streamwise velocity, the temporal and spatial distribution of the uniform momentum zones are achieved. Then the lasting distance and the appearing frequency are analyzed for the uniform momentum zones with different numbers. For different uniform momentum zone numbers, there are apparent differences for both the corresponding lasting distance and appearing frequency. When the number of uniform momentum zones is close to their mean value, the uniform momentum zones can last for long distance along the streamwise direction and have small streamwise separation, appearing more frequently. On the contrary, when the number of uniform momentum zones is far from the mean value, the corresponding uniform momentum zones last for smaller distance along the streamwise direction and have a larger streamwise separation, appearing less frequently.
  • loading
  • [1]
    刘铁峰, 王鑫蔚, 唐湛棋, 等. 超疏水表面对湍流边界层相干结构影响的TRPIV实验研究[J]. 实验流体力学, 2019, 33(3): 90–96. doi: 10.11729/syltlx20180101

    LIU T F, WANG X W, TANG Z Q, et al. TRPIV experimental study of the effect of superhydrophobic surface on the coherent structure of turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 90–96. doi: 10.11729/syltlx20180101
    [2]
    陈耀慧, 范宝春, 梅栋杰. 槽道壁湍流的展向振荡电磁力减阻控制的PIV研究[J]. 实验流体力学, 2011, 25(2): 68–72. doi: 10.3969/j.issn.1672-9897.2011.02.014

    CHEN Y H, FAN B C, MEI D J. PIV study of drag reduction in the near-wall turbulent channel flow under the control of spanwise oscillating Lorentz force[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(2): 68–72. doi: 10.3969/j.issn.1672-9897.2011.02.014
    [3]
    KLINE S J, REYNOLDS W C, SCHRAUB F A, et al. The structure of turbulent boundary layers[J]. Journal of Fluid Mechanics, 1967, 30: 741–773. doi: 10.1017/S0022112067001740
    [4]
    ROBINSON S K. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics, 1991, 23: 601–639. doi: 10.1146/annurev.fl.23.010191.003125
    [5]
    CHRISTENSEN K T, ADRIAN R J. Statistical evidence of hairpin vortex packets in wall turbulence[J]. Journal of Fluid Mechanics, 2001, 431: 433–443. doi: 10.1017/s0022112001003512
    [6]
    HUTCHINS N, MARUSIC I. Evidence of very long meandering features in the logarithmic region of turbulent boundary layers[J]. Journal of Fluid Mechanics, 2007, 579: 1–28. doi: 10.1017/s0022112006003946
    [7]
    HAMILTON J M, KIM J, WALEFFE F. Regeneration mechanisms of near-wall turbulence structures[J]. Journal of Fluid Mechanics, 1995, 287: 317–348. doi: 10.1017/s0022112095000978
    [8]
    WALEFFE F. On a self-sustaining process in shear flows[J]. Physics of Fluids, 1997, 9(4): 883–900. doi: 10.1063/1.869185
    [9]
    SCHOPPA W, HUSSAIN F. Coherent structure generation in near-wall turbulence[J]. Journal of Fluid Mechanics, 2002, 453: 57–108. doi: 10.1017/s002211200100667x
    [10]
    SMITS A J, MCKEON B J, MARUSIC I. High–reynolds number wall turbulence[J]. Annual Review of Fluid Me-chanics, 2011, 43: 353–375. doi: 10.1146/annurev-fluid-122109-160753
    [11]
    LI W F, ROGGENKAMP D, PAAKKARI V, et al. Analysis of a drag reduced flat plate turbulent boundary layer via uniform momentum zones[J]. Aerospace Science and Tech- nology, 2020, 96: 105552. doi: 10.1016/j.ast.2019.105552
    [12]
    WANG Y F, HUANG Y J, ZHANG J H, et al. Uniform momentum zones on the smooth and superhydrophobic surfaces in a turbulent boundary layer[J]. Acta Mechanica Sinica, 2023, 39(8): 1–17. doi: 10.1007/s10409-023-22467-x
    [13]
    ZHANG J H, LI B H, SU J B, et al. Influence of synthetic jet on uniform momentum zones[J]. International Journal of Heat and Fluid Flow, 2023, 101: 109131. doi: 10.1016/j.ijheatfluidflow.2023.109131
    [14]
    TANG Z Q, FAN Z Y, CHEN L T, et al. Outer-layer structure arrangements based on the large-scale zero-crossings at moderate Reynolds number[J]. Physics of Fluids, 2021, 33(8): 085121. doi: 10.1063/5.0057036
    [15]
    MEINHART C D, ADRIAN R J. On the existence of uniform momentum zones in a turbulent boundary layer[J]. Physics of Fluids, 1995, 7(4): 694–696. doi: 10.1063/1.868594
    [16]
    ADRIAN R J, MEINHART C D, TOMKINS C D. Vortex organization in the outer region of the turbulent boundary layer[J]. Journal of Fluid Mechanics, 2000, 422: 1–54. doi: 10.1017/S0022112000001580
    [17]
    DE SILVA C M, HUTCHINS N, MARUSIC I. Uniform momentum zones in turbulent boundary layers[J]. Journal of Fluid Mechanics, 2016, 786: 309–331. doi: 10.1017/jfm.2015.672
    [18]
    MORRIS S C, STOLPA S R, SLABOCH P E, et al. Near-surface particle image velocimetry measurements in a transitionally rough-wall atmospheric boundary layer[J]. Journal of Fluid Mechanics, 2007, 580: 319–338. doi: 10.1017/s0022112007005435
    [19]
    HEISEL M, DASARI T, LIU Y, et al. The spatial structure of the logarithmic region in very-high-Reynolds-number rough wall turbulent boundary layers[J]. Journal of Fluid Mechanics, 2018, 857: 704–747. doi: 10.1017/jfm.2018.759
    [20]
    CHEN X E, CHUNG Y M, WAN M P. Uniform-momentum zones in a turbulent pipeflow[J]. Journal of Fluid Mechanics, 2020, 884: A25. doi: 10.1017/jfm.2019.947
    [21]
    CHEN X E, CHUNG Y M, WAN M P. The uniform-momentum zones and internal shear layers in turbulent pipe flows at Reynolds numbers up to Re τ = 1000[J]. Interna-tional Journal of Heat and Fluid Flow, 2021, 90: 108817. doi: 10.1016/j.ijheatfluidflow.2021.108817
    [22]
    LASKARI A, DE KAT R, HEARST R J, et al. Time evolution of uniform momentum zones in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2018, 842: 554–590. doi: 10.1017/jfm.2018.126
    [23]
    WANG K J, LI B H, LIU L X, et al. Experimental measurement of coherent structures in turbulent boundary layers using moving time-resolved particle image veloci-metry[J]. Physics of Fluids, 2020, 32(11): 115102. doi: 10.1063/5.0024344
    [24]
    陈怡纯, 田海平, 马国祯, 等. 湍流边界层均匀动量区统计分形特性的PIV实验研究[J]. 力学学报, 2023.

    CHEN Y C, TIAN H P, MA G Z, et al. PIV experimental study on statistical fractal characteristics of uniform momentum zones in turbulent boundary layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023.
    [25]
    王超伟, 王康俊, 李彪辉, 等. 湍流边界层等动量区演化机理的实验研究[J]. 力学学报, 2021, 53(3): 761–772. doi: 10.6052/0459-1879-20-223

    WANG C W, WANG K J, LI B H, et al. Experimental investigation on the evolution mechanism of uniform momentum zones in turbulent boundary layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 761–772. doi: 10.6052/0459-1879-20-223
    [26]
    POPE S B. Turbulent flows[M]. Cambrige: Cambrige University Press, 2001.
    [27]
    SCHLATTER P, ÖRLÜ R, LI Q, et al. Turbulent boundary layers up to Re θ = 2500 studied through simulation and experiment[J]. Physics of Fluids, 2009, 21(5): 051702. doi: 10.1063/1.3139294
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (73) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return