Turn off MathJax
Article Contents
LIU Y Y, PAN C, GUO H, et al. Experimental study on flow structure of transition boundary layer of the underwater vehicles[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 1-9 doi: 10.11729/syltlx20230107
Citation: LIU Y Y, PAN C, GUO H, et al. Experimental study on flow structure of transition boundary layer of the underwater vehicles[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 1-9 doi: 10.11729/syltlx20230107

Experimental study on flow structure of transition boundary layer of the underwater vehicles

doi: 10.11729/syltlx20230107
  • Received Date: 2023-08-16
  • Accepted Date: 2023-12-18
  • Rev Recd Date: 2023-12-14
  • Available Online: 2024-04-01
  • Laser induced fluorescence (LIF) and particle image velocimetry (PIV) are used to measure the flow field of the transition boundary layer of the SUBOFF model subject to the free-stream turbulence (FST). The experiment is conducted in the water tunnel at Beihang University. The length of the SUBOFF model is L = 1.436 m, and the Reynolds number is ReL = 3.35 × 105 based on the length of the model and the free-stream velocity. The vortex structures during the transition process are identified using the grayscale field of laser-induced fluorescence and Finite-Time Lyapunov Exponents methods, which illustrate the generation and evolution process of typical structures, such as hairpin vortices and the induced secondary vortices. The coherent structures of the transition boundary layer are extracted using two-point correlation. Simultaneously, the elliptical fitting method is used to calculate the inclination angle of coherent structures. The inclination angle increases initially, and then decreases along the normal direction, reaching its maximum near the boundary layer. The visualization-based method is proposed for identifying turbulent/non-turbulent interfaces, with a focus on studying the geometric characteris-tics of the interface during the transition process. It is shown that the height and the fractal dimension of the interface increase along the transition.
  • loading
  • [1]
    陈久芬, 徐洋, 蒋万秋, 等. 升力体外形高超声速边界层转捩红外测量实验[J]. 实验流体力学. doi: 10.11729/syltlx20220030.

    CHEN Jiufen, XU Yang, JIANG Wanqiu, et al. Infrared thermogram measurement experiment of hypersonic boundary-layer transition of a lifting body[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220030.
    [2]
    张石玉, 赵俊波, 付增良, 等. 钝锥动态转捩风洞试验[J]. 实验流体力学, 2022, 36(6): 61–66. doi: 10.11729/syltlx20210120

    ZHANG S Y, ZHAO J B, FU Z L, et al. Dynamic boundary layer transition wind tunnel test of blunt cone[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 61–66. doi: 10.11729/syltlx20210120
    [3]
    李存标, 吴介之. 壁流动中的转捩[J]. 力学进展, 2009, 39(4): 480–507. doi: 10.6052/1000-0992-2009-4-J2009-008

    LEE C B, WU J Z. Transition in wall-bounded flows[J]. Advances in Mechanics, 2009, 39(4): 480–507. doi: 10.6052/1000-0992-2009-4-J2009-008
    [4]
    SREENIVAS K, HYAMS D, MITCHELL B, et al. Physics based simulation of Reynolds number effects in vortex intensive incompressible flows[C]//Proc of the RTO AVT Symposium on “Advanced Flow Management: Part A – Vortex Flows and High Angle of Attack for Military Vehicles”, RTO-mp-069(I). 2001.
    [5]
    PANTELATOS D K, MATHIOULAKIS D S. Experimental flow study over a blunt-nosed axisymmetric body at incidence[J]. Journal of Fluids and Structures, 2004, 19(8): 1103–1115. doi: 10.1016/j.jfluidstructs.2004.07.004
    [6]
    GROSS A, KREMHELLER A, FASEL H. Simulation of flow over suboff bare hull model[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011. doi: 10.2514/6.2011-290.
    [7]
    QUICK H, WIDJAJA R, ANDERSON B, et al. Phase I experimental testing of a generic submarine model in the DSTO low speed wind tunnel[R]. DSTO-TN-1101, 2012.
    [8]
    ASHOK A, SMITS A. The turbulent wake of a submarine model at varying pitch and yaw angle[C]//Proc of the 18th Australasian Fluid Mechanics Conference. 2012.
    [9]
    潘家鑫, 耿子海, 李国强, 等. 基于水洞激光诱导荧光技术的不同气动构型流动特性研究[J]. 气动研究与实验, 2022, 34(2): 100–107. doi: 10.12050/are20220212

    PAN J X, GENG Z H, LI G Q, et al. Research on the flow characteristics of different aerodynamic configurations based on water tunnel laser-induced fluorescence technology[J]. Aerodynamic Research & Experiment, 2022, 34(2): 100–107. doi: 10.12050/are20220212
    [10]
    SAEIDINEZHAD A, DEHGHAN A A, DEHGHAN MANSHADI M. Nose shape effect on the visualized flow field around an axisymmetric body of revolution at incidence[J]. Journal of Visualization, 2015, 18(1): 83–93. doi: 10.1007/s12650-014-0226-1
    [11]
    SAEIDINEZHAD A, DEHGHAN A A, DEHGHAN MANSHADI M. Experimental investigation of hydrodyna-mic characteristics of a submersible vehicle model with a non-axisymmetric nose in pitch maneuver[J]. Ocean Engineering, 2015, 100: 26–34. doi: 10.1016/j.oceaneng.2015.03.010
    [12]
    LEE S K. Longitudinal development of flow-separation lines on slender bodies in translation[J]. Journal of Fluid Mechanics, 2018, 837: 627–639. doi: 10.1017/jfm.2017.886
    [13]
    ASHOK A, VAN BUREN T, SMITS A J. The structure of the wake generated by a submarine model in yaw[J]. Experiments in Fluids, 2015, 56(6): 123. doi: 10.1007/s00348-015-1997-4
    [14]
    ASHOK A, VAN BUREN T, SMITS A. Asymmetries in the wake of a submarine modelinpitch[J]. Journal of Fluid Mechanics, 2015, 774: 416–442. doi: 10.1017/jfm.2015.277
    [15]
    KUMAR P, MAHESH K. Large-eddy simulation of flow over an axisymmetric body of revolution[J]. Journal of Fluid Mechanics, 2018, 853: 537–563. doi: 10.1017/jfm.2018.585
    [16]
    MORSE N, MAHESH K. Large-eddy simulation and streamline coordinate analysis of flow over an axisymmetric hull[J]. Journal of Fluid Mechanics, 2021, 926: A18. doi: 10.1017/jfm.2021.714
    [17]
    MANOVSKI P, JONES M B, HENBEST S M, et al. Boundary layer measurements over a body of revolution using long-distance particle image velocimetry[J]. Inter-national Journal of Heat and Fluid Flow, 2020, 83: 108591. doi: 10.1016/j.ijheatfluidflow.2020.108591
    [18]
    PAN C, XUE D, XU Y, et al. Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(10): 104704. DOI: 10.1007/s11433-015-5719-y.
    [19]
    HE G S, PAN C, FENG L H, et al. Evolution of Lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layer[J]. Journal of Fluid Mechanics, 2016, 792: 274–306. doi: 10.1017/jfm.2016.81
    [20]
    HALLER G. Lagrangian coherent structures[J]. Annual Review of Fluid Mechanics, 2015, 47: 137–162. doi: 10.1146/annurev-fluid-010313-141322
    [21]
    GREEN M A, ROWLEY C W, HALLER G. Detection of Lagrangian coherent structures in three-dimensional turbulence[J]. Journal of Fluid Mechanics, 2007, 572: 111–120. doi: 10.1017/s0022112006003648
    [22]
    杨强, 袁先旭, 陈坚强, 等. 不可压壁湍流中基本相干结构[J]. 空气动力学学报, 2020, 38(1): 82–99. doi: 10.7638/kqdlxxb-2019.0117

    YANG Q, YUAN X X, CHEN J Q, et al. On elementary coherent structures in incompressible wall-bounded turbulence[J]. Acta Aerodynamica Sinica, 2020, 38(1): 82–99. doi: 10.7638/kqdlxxb-2019.0117
    [23]
    王轩, 范子椰, 陈乐天, 等. 流向凹曲率壁面湍流边界层的TRPIV实验研究[J]. 实验流体力学, 2022, 36(6): 1–9. doi: 10.11729/syltlx20210084

    WANG X, FAN Z Y, CHEN L T, et al. Experimental study of TRPIV for turbulent boundary layer of longitudinal concave curvature wall[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 1–9. doi: 10.11729/syltlx20210084
    [24]
    PAN C, WANG J J, ZHANG C. Identification of Lagrangian coherent structures in the turbulent boundary layer[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52(2): 248-257. DOI: 10.1007/s11433-009-0033-1.
    [25]
    李思成, 吴迪, 崔光耀, 等. 低雷诺数沟槽表面湍流/非湍流界面特性的实验研究[J]. 力学学报, 2020, 52(6): 1632–1644. doi: 10.6052/0459-1879-20-211

    LI S C, WU D, CUI G Y, et al. Experimental study on properties of turbulent/non-turbulent interface over riblets surfaces at low Reynolds numbers[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1632–1644. doi: 10.6052/0459-1879-20-211
    [26]
    LONG Y G, WU D, WANG J J. A novel and robust method for the turbulent/non-turbulent interface detection[J]. Experiments in Fluids, 2021, 62(7): 138. doi: 10.1007/s00348-021-03231-6
    [27]
    EISMA J, WESTERWEEL J, VAN DE WATER W. Do coherent structures organize scalar mixing in a turbulent boundary layer?[J]. Journal of Fluid Mechanics, 2021, 929: A14. doi: 10.1017/jfm.2021.821
    [28]
    XU C Y, LONG Y G, WANG J J. Entrainment mechanism of turbulent synthetic jet flow[J]. Journal of Fluid Mechanics, 2023, 958: A31. doi: 10.1017/jfm.2023.102
    [29]
    GAMPERT M, KLEINHEINZ K, PETERS N, et al. Experimental and numerical study of the scalar turbulent/non-turbulent interface layer in a jet flow[J]. Flow, Turbulence and Combustion, 2014, 92(1): 429–449. doi: 10.1007/s10494-013-9471-y
    [30]
    HOLZNER M, LIBERZON A, NIKITIN N, et al. Small-scale aspects of flows in proximity of the turbulent/nonturbulent interface[J]. Physics of Fluids, 2007, 19(7): 071702. doi: 10.1063/1.2746037
    [31]
    WESTERWEEL J, HOFMANN T, FUKUSHIMA C, et al. The turbulent/non-turbulent interface at the outer boundary of a self-similar turbulent jet[J]. Experiments in Fluids, 2002, 33(6): 873–878. doi: 10.1007/s00348-002-0489-5
    [32]
    MANDELBROT B B. The fractal geometry of nature[M]. San Francisco: W. H. Freeman, 1982.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (27) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return