Volume 37 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
ZHANG S X, BAI H L. Active drag reduction for a D-shaped cylinder flow using Coanda pulsation jets[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 126-136 doi: 10.11729/syltlx20230053
Citation: ZHANG S X, BAI H L. Active drag reduction for a D-shaped cylinder flow using Coanda pulsation jets[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 126-136 doi: 10.11729/syltlx20230053

Active drag reduction for a D-shaped cylinder flow using Coanda pulsation jets

doi: 10.11729/syltlx20230053
  • Received Date: 2023-04-10
  • Accepted Date: 2023-07-06
  • Rev Recd Date: 2023-06-28
  • Available Online: 2023-08-02
  • Publish Date: 2023-08-30
  • A D-shaped cylinder can be considered as one of the typical models for bluff bodies; flow separation from the trailing edges and near-wake flow structures are internally linked with aerodynamic forces acting on the D-shaped cylinder. Based on Coanda pulsation jets and Genetic Algorithms (GAs), this work is focused on the active control of the D-shaped cylinder flow for drag reduction. Wind tunnel experiments are conducted at a Reynolds number Re = 1.8 × 104, which is based on the incoming freestream velocity and height of the D-shaped cylinder. Being placed on the upper and lower sides of the cylinder base, the Coanda pulsation jets are composed of 1/4-parts of a circular cylinder (radius is 0.2H) and horizontal slot jets. Control parameters include the driving pressure of the jet, pulsation frequency, duty cycle, and the phase shift of the lower and upper jets. The time-averaged base pressure of the D-shaped cylinder, which is connected with the drag force, is chosen to be the objective function of GAs. Results from this work indicate that GAs are robust to identify the optimum control parameters (i.e., driving pressure of the jet is 1.94 times atmospheric pressure, non-dimensional pulsation frequency is 0.27, duty cycle is 37% and phase shift is 136°), resulting in a recovery of the base pressure up to 61% (corresponding to a drag reduction up to 23%), associated with a high efficiency of 45%; meanwhile, it is observed that large-scale near-wake structures of the D-shaped cylinder are impaired, with altered shedding frequency and phase difference, by the Coanda pulsation jets.
  • loading
  • [1]
    MELIGA P, PUJALS G, SERRE É. Sensitivity of 2-D turbulent flow past a D-shaped cylinder using global stability[J]. Physics of Fluids, 2012, 24(6): 061701. doi: 10.1063/1.4724211
    [2]
    PALEI V, SEIFERT A. Effects of periodic excitation on the flow around a D-shaped cylinder at low Reynolds numbers[J]. Flow, Turbulence and Combustion, 2007, 78(3): 409–428. doi: 10.1007/s10494-007-9073-7
    [3]
    TOMBAZIS N, BEARMAN P W. A study of three-dimensional aspects of vortex shedding from a bluff body with a mild geometric disturbance[J]. Journal of Fluid Mechanics, 1997, 330: 85–112. doi: 10.1017/s0022112096003631
    [4]
    PARK H, LEE D, JEON W P, et al. Drag reduction in flow over a two-dimensional bluff body with a blunt trailing edge using a new passive device[J]. Journal of Fluid Mechanics, 2006, 563: 389. doi: 10.1017/s0022112006001364
    [5]
    THIRIA B, CADOT O, BEAUDOIN J F. Passive drag control of a blunt trailing edge cylinder[J]. Journal of Fluids and Structures, 2009, 25(5): 766–776. doi: 10.1016/j.jfluidstructs.2008.07.008
    [6]
    CHOI H, JEON W P, KIM J. Control of flow over a bluff body[J]. Annual Review of Fluid Mechanics, 2008, 40: 113–139. doi: 10.1146/annurev.fluid.39.050905.110149
    [7]
    GAO N, LI Y Q, BAI H L, et al. Effects of synthetic jets on a D-Shaped cylinder wake at a subcritical Reynolds number[J]. Flow, Turbulence and Combustion, 2016, 97(3): 729–742. doi: 10.1007/s10494-016-9712-y
    [8]
    HENNING L, KING R. Drag reduction by closed-loop control of a separated flow over a bluff body with a blunt trailing edge[C]//Proceedings of the 44th IEEE Conference on Decision and Control. 2006: 494-499. doi: 10.1109/CDC.2005.1582204
    [9]
    PASTOOR M, HENNING L, NOACK B R, et al. Feedback shear layer control for bluff body drag reduction[J]. Journal of Fluid Mechanics, 2008, 608: 161–196. doi: 10.1017/s0022112008002073
    [10]
    OSWALD P, SEMAAN R, NOACK B R. Open- and closed loop control on a D-shaped bluff body equipped with Coanda actuation[C]//Proc of the AIAA Aviation 2019 Forum. 2019: 3601. doi: 10.2514/6.2019-3601
    [11]
    SHAQARIN T, OSWALD P, NOACK B R, et al. Drag reduction of a D-shaped bluff-body using linear parameter varying control[J]. Physics of Fluids, 2021, 33(7): 077108. doi: 10.1063/5.0058801
    [12]
    ABRAMSON J, ROGERS E. High-speed characteristics of circulation control airfoils[C]//Proc of the 21st Aerospace Sciences Meeting. 1983: 265. doi: 10.2514/6.1983-265
    [13]
    任峰, 高传强, 唐辉. 机器学习在流动控制领域的应用及发展趋势[J]. 航空学报, 2021, 42(4): 146–160. doi: 10.3321/j.issn:1000-0992.2005.02.009

    REN F, GAO C Q, TANG H. Machine learning for flow control: applications and development trends[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 146–160. doi: 10.3321/j.issn:1000-0992.2005.02.009
    [14]
    CHAN C M, BAI H L, HE D Q. Blade shape optimization of the Savonius wind turbine using a genetic algorithm[J]. Applied Energy, 2018, 213: 148–157. doi: 10.1016/j.apenergy.2018.01.029
    [15]
    QIAO Z X, MINELLI G, NOACK B R, et al. Multi-frequency aerodynamic control of a yawed bluff body optimized with a genetic algorithm[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 212: 104600. doi: 10.1016/j.jweia.2021.104600
    [16]
    SEMAAN R. Shape optimization of active and passive drag-reducing devices on a D-shaped bluff body[M]//New Results in Numerical and Experimental Fluid Mechanics XI. Cham: Springer International Publishing, 2017: 327-336. doi: 10.1007/978-3-319-64519-3_30
    [17]
    MERCKER E. A blockage correction for automotive testing in a wind tunnel with closed test section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1986, 22(2-3): 149–167. doi: 10.1016/0167-6105(86)90080-2
    [18]
    BARROS D, BORÉE J, NOACK B R, et al. Bluff body drag manipulation using pulsed jets and Coanda effect[J]. Journal of Fluid Mechanics, 2016, 805: 422–459. doi: 10.1017/jfm.2016.508
    [19]
    JUKES T N, CHOI K S. Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma[J]. Physics of Fluids, 2009, 21(8): 084103. doi: 10.1063/1.3194307
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article views (160) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return