Volume 37 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
ZHANG J Y, LUO Z B, PENG W Q, et al. Investigation on performance enhancement of flap based on dual synthetic jets[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 76-86 doi: 10.11729/syltlx20230046
Citation: ZHANG J Y, LUO Z B, PENG W Q, et al. Investigation on performance enhancement of flap based on dual synthetic jets[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 76-86 doi: 10.11729/syltlx20230046

Investigation on performance enhancement of flap based on dual synthetic jets

doi: 10.11729/syltlx20230046
  • Received Date: 2023-04-06
  • Accepted Date: 2023-07-05
  • Rev Recd Date: 2023-06-16
  • Publish Date: 2023-08-30
  • When the aircraft is in the process of taking off, landing and flexible maneuvering, flow separation occurs above the flap and rudder which is caused by the large deflection angle. It reduces the performance of the flap and rudder, or even makes them ineffective. In order to solve this problem, a performance enhancement technology of flap based on array dual synthetic jets was proposed. Aiming at seamless flap, the influence of different dual synthetic jets driving parameters on the lift force and flap performance was investigated. The investigation results show that the dual synthetic jets can generate periodic vortex structures above the flap surface, which enhanced the momentum exchange between the low-velocity air in the boundary layer and the main flow. These vortex structures can also strengthen the ability of the boundary layer to resist the adverse pressure gradient. The array dual synthetic jets at the flap can effectively increase the lift force and enhance the flap performance. The flap performance enhancement is more effective when the dimensionless driving frequency is 3.89 and the momentum coefficient is 3.01 × 10–3. The integrated model of the array dual synthetic jets actuator combined with the wing was designed and fabricated, and the flight test was carried out. The rolling angular velocity could achieve 15.69 (°)/s, which verifies the feasibility and effectiveness of performance enhancement of flap based on dual synthetic jets.
  • loading
  • [1]
    HUANG L, MAESTRELLO L, BRYANT T. Separation control over an airfoil at high angles of attack by sound emanating from the surface[C]//Proc of 19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference. 1987. doi: 10.2514/6.1987-1261
    [2]
    SERFERT A, BACHAR T, KOSS D, et al. Oscillatory blowing: A tool to delay boundary-layer separation[J]. AIAA Journal, 1993, 31(11): 2052–2060. doi: 10.2514/3.49121
    [3]
    LATUNIA G P, RONALD D J. Overview of active flow control at NASA Langley Research Center[C]//Proc of Smart Structures and Materials 1998: Industrial and Commercial Applications of Smart Structures Technologies. 1998. doi: 10.1117/12.310635
    [4]
    焦予秦, 程玉庆, 金承信. 机翼喷流增升机理的风洞试验研究[J]. 实验流体力学, 2008, 22(2): 20–24. doi: 10.3969/j.issn.1672-9897.2008.02.004

    JIAO Y Q, CHENG Y Q, JIN C X. Wind tunnel experimental research on lift-enhancing mechanism of jet on wing of aircraft[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(2): 20–24. doi: 10.3969/j.issn.1672-9897.2008.02.004
    [5]
    白俊强, 辛亮, 刘南, 等. 分布式零质量射流控制增升装置分离的数值模拟[J]. 西北工业大学学报, 2014, 32(02): 188–194. doi: 10.3969/j.issn.1000-2758.2014.02.006

    BAI J Q, XIN L, LIU N, et al. Numerical simulation of separation control for high lift system using distributed zero-net mass flux jet[J]. Journal of Northwestern Polytechnical University, 2014, 32(02): 188–194. doi: 10.3969/j.issn.1000-2758.2014.02.006
    [6]
    王万波, 姜裕标, 黄勇, 等. 脉冲吹气对无缝襟翼翼型气动性能的影响[J]. 航空学报, 2018, 39(11): 37–48.

    WANG W B, JIANG Y B, HUANG Y, et al. Influence of pulse blowing on slotless flap airfoil aerodynamic characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 37–48.
    [7]
    史子颉, 许和勇, 郭润杰, 等. 协同射流在垂直尾翼流动控制中的应用研究[J]. 航空工程进展, 2022, 13(01): 28–41. doi: 10.16615/j.cnki.1674-8190.2022.01.03

    SHI Z J, XU H Y, GUO R J, et al. Application research of flow control using co-flow jet on a vertical tail[J]. Advances in Aeronautical Science and Engineering, 2022, 13(01): 28–41. doi: 10.16615/j.cnki.1674-8190.2022.01.03
    [8]
    SMITH B L, GLEZER A. The formation and evolution of synthetic jets[J]. Physics of Fluids, 1998, 10(9): 2281–2297. doi: 10.1063/1.869828
    [9]
    CROOK A, SADRI A, WOOD N. The development and implementation of synthetic jets for the control of separated flow[C]//Proc of Applied Aerodynamics Conference. 1999. doi: 10.2514/6.1999-3176
    [10]
    RYAN H, YOGEN U, RAJAT M, et al. Formation Criterion for Synthetic Jets[J]. AIAA Journal, 2005, 43(10): 2110–2116. doi: 10.2514/1.12033
    [11]
    KONDOR S, AMITAY M, PAREKH D, et al. Active flow control application on a mini ducted fan UAV[C]//Proc of 19th AIAA Applied Aerodynamics Conference. 2001. doi: 10.2514/6.2001-2440
    [12]
    AMITAY M, PITT D, GLEZER A. Separation control in duct flows[J]. Journal of Aircraft, 2002, 39(4): 616–620. doi: 10.2514/2.2973
    [13]
    RATHAY N W, BOUCHER M J, AMITAY M, et al. Performance enhancement of a vertical stabilizer using synthetic jet actuators: no sideslip[C]//Proc of AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2012. doi: 10.2514/6.2012-71
    [14]
    RATHAY N W, BOUCHER M J, AMITAY M, et al. Performance enhancement of a vertical stabilizer using synthetic jet actuators: non-zero sideslip[C]//Proc of AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2012. doi: 10.2514/6.2012-2657
    [15]
    RATHAY N W, BOUCHER M J, AMITAY M, et al. Application of synthetic jets to enhance the performance of a vertical tail[J]. SAE International Journal of Aerospace, 2013, 6(1): 169–179. doi: 10.4271/2013-01-2284
    [16]
    BRANT H M, BRIAN R S, DAVID M, et al. Synthetic jet flow separation control for thin wing fighter aircraft[C]//Proc of 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forumand Aerospace Exposition (Disc 1). 2009. doi: 10.2514/10.2514/6.2009-885
    [17]
    罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D]. 湖南: 国防科学技术大学, 2006.

    LUO Z B. Principle of synthetic jet and dual synthetic jets, and their applications in jet vectoring and micro-pump[D]. Hunan: National University of Defense Technology, 2006.
    [18]
    LUO Z B, XIA Z X, LIU B. New generation of synthetic jet actuators[J]. AIAA Journal, 2006, 44(10): 2418–2420. doi: 10.2514/1.20747
    [19]
    LUO Z B, XIA Z X, XIE Y G. Jet vectoring control using a novel synthetic jet actuator[J]. Chinese Journal of Aeronautics, 2007, 20(3): 193–201. doi: 10.1016/S1000-9361(07)60032-6
    [20]
    罗振兵, 夏智勋, 邓雄, 等. 合成双射流及其流动控制技术研究进展[J]. 空气动力学学报, 2017, 35(2): 252–264.

    LUO Z B, XIA Z X, DENG X, et al. Research progress of dual synthetic jets and its flow control technology[J]. Acta Aerodynamica Sinica, 2017, 35(2): 252–264.
    [21]
    王林. 合成双射流激励器流场特性及其控制机翼分离流动研究[D]. 湖南: 国防科学技术大学, 2009.

    WANG L. Flow characteristics of dual synthetic jets actuators and its application on an airfoil separate control[D]. Hunan: National University of Defense Technology, 2009.
    [22]
    李玉杰. 基于合成双射流的机翼分离流控制及结冰控制研究[D]. 湖南: 国防科学技术大学, 2015.

    LI Y J. Research on airfoil separate flow control and airfoil icing control using dual synthetic jet actuator[D]. Hunan: National University of Defense Technology, 2015.
    [23]
    李玉杰, 罗振兵, 邓雄, 等. 合成双射流控制NACA0015翼型大攻角流动分离试验研究[J]. 航空学报, 2016, 37(3): 817–825.

    LI Y J, LUO Z B, DENG X, et al. Experiment investigation on flow separation control of stalled NACA0015 airfoil using dual synthetic jets actuator[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 817–825.
    [24]
    SHAHRABI A F. The control of flow separation: Study of optimal open loop parameters[J]. Physics of Fluids, 2019, 31(3): 035104. doi: 10.1063/1.5082945
    [25]
    AHMADI G, MARZOCCA P, JHA R, et al. Active flow control of lifting surface with flap-current activities and future directions[R]. NASA/CP—2010-216112, 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (126) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return