Volume 37 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
QIU Z H, LI Z Y, ZHOU K W, et al. Sweeping jet control mechanism and its application in flapless flight control[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 116-125 doi: 10.11729/syltlx20230045
Citation: QIU Z H, LI Z Y, ZHOU K W, et al. Sweeping jet control mechanism and its application in flapless flight control[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 116-125 doi: 10.11729/syltlx20230045

Sweeping jet control mechanism and its application in flapless flight control

doi: 10.11729/syltlx20230045
  • Received Date: 2023-03-28
  • Accepted Date: 2023-07-03
  • Rev Recd Date: 2023-06-08
  • Publish Date: 2023-08-30
  • The flapless aerodynamic control technology of aircraft has the advantages of low additional weight, excellent control performance and suitability for stealth design by using the active flow control method of jets and eliminating the traditional mechanical flap surface. This paper presents the application of sweeping jets in flapless aerodynamic layouts to address the problem of high air consumption caused by the low control efficiency of existing steady jet control methods. This paper outlines the current research status of two flapless control technologies, i.e., circulation control and fluidic thrust vectoring, and then discusses the mechanism and advantages of the sweeping jet in terms of control area, enhanced flow mixing, and frequency regulation. The mechanism and performance of the sweeping jet in flapless flight control are presented in detail in terms of circulation control and thrust vectoring.
  • loading
  • [1]
    WARSOP C, CROWTHER W J. Fluidic flow control effectors for flight control[J]. AIAA Journal, 2018, 56(10): 3808–3824. doi: 10.2514/1.J056787
    [2]
    FIELDING J, LAWSON C, MARTINS-PIRES R, et al. Design, build and flight of the DEMON demonstrator UAV[C]//Proc of the 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. 2011: 6963. doi: 10.2514/6.2011-6963.
    [3]
    WARSOP C, CROWTHER W. NATO AVT-239 Task Group: Flight demonstration of fluidic flight controls on the MAGMA subscale demonstrator Aircraft[C]//Proc of the AIAA Scitech 2019 Forum. 2019: 0282. doi: 10.2514/6.2019-0282.
    [4]
    HENRI C. Device for deflecting a stream of elastic fluid projected into an elastic fluid: US2052869[P]. 1936-09-01.
    [5]
    REBA I. Applications of the coanda effect[J]. Scientific American, 1966, 214(6): 84–92. doi: 10.1038/scientificamerican0666-84
    [6]
    ENGLAR R J. Experimental investigation of the high velocity Coanda wall jet applied to bluff trailing edge circulation control airfoils[R]. NASA STI/Recon Technical Report N, 1975, 76: 26438.
    [7]
    ABRAMSON J, ROGERS E. High-speed characteristics of circulation control airfoils[C]//Proc of the 21st Aerospace Sciences Meeting. 1983: 265. doi: 10.2514/6.1983-265
    [8]
    WOOD N, NIELSEN J. Circulation control airfoils - Past, present, future[C]//Proc of the 23rd Aerospace Sciences Meeting. 1985: 204. doi: 10.2514/6.1985-204.
    [9]
    ENGLAR R. Circulation control pneumatic aerodynamics: blown force and moment augmentation and modification - Past, present and future[C]//Proc of the Fluids 2000 Conference and Exhibit. 2000: 2541. doi: 10.2514/6.2000-2541.
    [10]
    JONES G, VIKEN S, WASHBURN A, et al. An active flow circulation controlled flap concept for general aviation aircraft applications[C]//Proc of the 1st Flow Control Conference. 2002: 3157. doi: 10.2514/6.2002-3157.
    [11]
    SHI Z W, ZHU J C, DAI X X, et al. Aerodynamic characteristics and flight testing of a UAV without control surfaces based on circulation control[J]. Journal of Aerospace Engineering, 2019, 32(1): 4018134.1–4018134.23. doi: 10.1061/(asce)as.1943-5525.0000947
    [12]
    LUO Z B, ZHAO Z J, LIU J F, et al. Novel roll effector based on zero-mass-flux dual synthetic jets and its flight test[J]. Chinese Journal of Aeronautics, 2022, 35(8): 1–6. doi: 10.1016/j.cja.2021.08.015
    [13]
    雷玉昌, 张登成, 张艳华, 等. 超临界翼型的双射流环量控制研究[J]. 飞行力学, 2020, 38(4): 16–21. doi: 10.13645/j.cnki.f.d.20200602.010

    LEI Y C, ZHANG D C, ZHANG Y H, et al. Circulation control of double jet flow on supercritical airfoil[J]. Flight Dynamics, 2020, 38(4): 16–21. doi: 10.13645/j.cnki.f.d.20200602.010
    [14]
    王磊, 杜海, 李秋实, 等. 环量控制机翼增升及滚转控制特性研究[J]. 空气动力学学报, 2021, 39(1): 43–51. doi: 10.7638/kqdlxxb-2019.0069

    WANG L, DU H, LI Q S, et al. Research on the lift-enhancement and roll control characteristics of a circulation control wing[J]. Acta Aerodynamica Sinica, 2021, 39(1): 43–51. doi: 10.7638/kqdlxxb-2019.0069
    [15]
    雷玉昌, 张登成, 张艳华. 环量控制翼型非定常气动力建模[J]. 北京航空航天大学学报, 2021, 47(10): 2138–2148. doi: 10.13700/j.bh.1001-5965.2020.0360

    LEI Y C, ZHANG D C, ZHANG Y H. Unsteady aerodynamic modeling of circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2138–2148. doi: 10.13700/j.bh.1001-5965.2020.0360
    [16]
    雷玉昌, 张登成, 张艳华, 等. 脉冲射流对环量控制翼型气动性能的影响[J]. 北京航空航天大学学报, 2022, 48(3): 485–494. doi: 10.13700/j.bh.1001-5965.2020.0560

    LEI Y C, ZHANG D C, ZHANG Y H, et al. Effect of pulsed jet on aerodynamic performance of circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 485–494. doi: 10.13700/j.bh.1001-5965.2020.0560
    [17]
    BARHAM R. Thrust vector aided maneuvering of the YF-22 Advanced Tactical Fighter prototype[C]//Proc of the Biennial Flight Test Conference. 1994: 2105. doi: 10.2514/6.1994-2105.
    [18]
    肖中云, 江雄, 牟斌, 等. 流体推力矢量技术研究综述[J]. 实验流体力学, 2017, 31(4): 8–15. doi: 10.11729/syltlx20160207

    XIAO Z Y, JIANG X, MOU B, et al. Advances influidic thrust vectoring technique research[J]. Journal of Experi-ments in Fluid Mechanics, 2017, 31(4): 8–15. doi: 10.11729/syltlx20160207
    [19]
    DEERE K. Summary of fluidic thrust vectoring research at NASA langley research center[C]//Proc of the 21st AIAA Applied Aerodynamics Conference. 2003: 3800. doi: 10.2514/6.2003-3800.
    [20]
    FLAMM J D, DEERE K A, BERRIER B L, et al. Experimental study of a dual-throat fluidic thrust-vectoring nozzle concept[C]//Proc of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2005: 3503. doi: 10.2514/6.2005-3503.
    [21]
    DENG R Y, SETOGUCHI T, DONG KIM H. Large eddy simulation of shock vector control using bypass flow passage[J]. International Journal of Heat and Fluid Flow, 2016, 62: 474–481. doi: 10.1016/j.ijheatfluidflow.2016.08.011
    [22]
    MILLER D, YAGLE P, HAMSTRA J. Fluidic throat skewing for thrust vectoring in fixed-geometry nozzles[C]// Proc of the 37th Aerospace Sciences Meeting and Exhibit. 1999: 365. doi: 10.2514/6.1999-365.
    [23]
    WASHINGTON D M, ALVI F S, STRYKOWSKI P J, et al. Multiaxis fluidic thrust vector control of a supersonic jet using counterflow[J]. AIAA Journal, 1996, 34(8): 1734–1736. doi: 10.2514/3.13296
    [24]
    DEERE K A, BERRIER B L, FLAMM J D, et al. A computational study of a dual throat fluidic thrust vectoring nozzle concept[C]//Proc of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2005: 3502. doi: 10.2514/6.2005-3502.
    [25]
    SUNG H G, HEO J Y. Fluidic thrust vector control of supersonic jet using coflow injection[J]. Journal of Propul-sion and Power, 2012, 28(4): 858–861. doi: 10.2514/1.B34266
    [26]
    MASON M, CROWTHER W. Fluidic thrust vectoring for low observable air vehicles[C]//Proc of the 2nd AIAA Flow Control Conference. 2004: 2210. doi: 10.2514/6.2004-2210
    [27]
    SONG M, PARK S, LEE Y. Application of backstep coanda flap for supersonic coflowing fluidic thrust-vector control[J]. AIAA Journal, 2014, 52(10): 2355–2359. doi: 10.2514/1.J052971
    [28]
    龚东升. 基于微型涡喷发动机的无源流体推力矢量喷管的研究[D]. 南京: 南京航空航天大学硕士学位论文, 2020.

    GONG D S. Research on passive fluid thrust vector nozzle based on micro turbojet engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.
    [29]
    龚东升, 顾蕴松, 周宇航, 等. 基于微型涡喷发动机热喷流的无源流体推力矢量喷管的控制规律[J]. 航空学报, 2020, 41(10): 101–112. doi: 10.7527/S1000-6893.2019.23609

    GONG D S, GU Y S, ZHOU Y H, et al. Control law of passive fluid thrust vector nozzle based on thermal jet of micro turbojet engine[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 101–112. doi: 10.7527/S1000-6893.2019.23609
    [30]
    冯潮, 顾蕴松, 方瑞山, 等. 水下无源流体推力矢量喷管流动特性研究[J]. 实验流体力学.

    FENG C, GU Y S, FANG R S, et al. Research on flow characteristics of underwater passive fluidic thrust vectoring nozzle[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220071
    [31]
    肖中云, 顾蕴松, 江雄, 等. 一种基于引射效应的流体推力矢量新技术[J]. 航空学报, 2012, 33(11): 1967–1974. doi: 10.3321/j.issn:1000-6893.2008.04.001

    XIAO Z Y, GU Y S, JIANG X, et al. A new fluidic thrust vectoring technique based on ejecting mixing effects[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1967–1974. doi: 10.3321/j.issn:1000-6893.2008.04.001
    [32]
    耿令波, 胡志强, 林扬, 等. 基于横向二次射流的水下推力矢量方法[J]. 航空动力学报, 2017, 32(8): 1922–1932. doi: 10.13224/j.cnki.jasp.2017.08.016

    GENG L B, HU Z Q, LIN Y, et al. Underwater thrust vectoring method based on cross second flow[J]. Journal of Aerospace Power, 2017, 32(8): 1922–1932. doi: 10.13224/j.cnki.jasp.2017.08.016
    [33]
    YAROS S F, SEXSTONE M G, HUEBNER L D, et al. Synergistic Airframe-Propulsion Interactions and Integra-tions: A White Paper Prepared by the 1996-1997 Langley Aeronautics Technical Committee[R]. NASA/TM-1998-207644, 1998.
    [34]
    JONES G S, ENGLAR R J. Advances in pneumatic controlled high lift systems through pulsed blowing[C]//Proc of the 21st AIAA Applied Aerodynamics Conference. 2003: 3411. doi: 10.2514/6.2003-3411.
    [35]
    JONES A, EDSTRAND A, CHANDRAN M, et al. An experimental investigation of unsteady and steady circulation control for an elliptical airfoil[C]//Proc of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010. doi: 10.2514/6.2010-346.
    [36]
    PACK L G, SEIFERT A. Periodic excitation for jet vectoring and enhanced spreading[J]. Journal of Aircraft, 2001, 38(3): 486–495. doi: 10.2514/2.2788
    [37]
    WOSZIDLO R, OSTERMANN F, SCHMIDT H J. Fundamental properties of fluidic oscillators for flow control applications[J]. AIAA Journal, 2019, 57(3): 978–992. doi: 10.2514/1.J056775
    [38]
    BOBUSCH B C, WOSZIDLO R, BERGADA J M, et al. Experimental study of the internal flow structures inside a fluidic oscillator[J]. Experiments in Fluids, 2013, 54(6): 1559. doi: 10.1007/s00348-013-1559-6
    [39]
    GAERTLEIN S, WOSZIDLO R, OSTERMANN F, et al. The time-resolved internal and external flow field properties of a fluidic oscillator[C]//Proc of the 52nd Aerospace Sciences Meeting. 2014: 1143. doi: 10.2514/6.2014-1143.
    [40]
    OSTERMANN F, WOSZIDLO R, NAYERI C, et al. Experimental comparison between the flow Field of two common fluidic oscillator designs[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015: 0781. doi: 10.2514/6.2015-0781.
    [41]
    LI Z Y, LIU J J, ZHOU W W, et al. Experimental investigation of flow dynamics of sweeping jets impinging upon confined concave surfaces[J]. International Journal of Heat and Mass Transfer, 2019, 142: 118457. doi: 10.1016/j.ijheatmasstransfer.2019.118457
    [42]
    GREGORY J W, SULLIVAN J P, RAMAN G, et al. Characterization of the microfluidic oscillator[J]. AIAA Journal, 2007, 45(3): 568–576. doi: 10.2514/1.26127
    [43]
    MELTON L P, KOKLU M, ANDINO M, et al. Active flow control via discrete sweeping and steady jets on a simple-hinged flap[J]. AIAA Journal, 2018, 56(8): 2961–2973. doi: 10.2514/1.j056841
    [44]
    RAMAN G, RAGHU S. Miniature fluidic oscillators for flow and noise control - Transitioning from macro to micro fluidics[C]//Proc of the Fluids 2000 Conference and Exhibit. 2000: 2554. doi: 10.2514/6.2000-2554.
    [45]
    SCHMIDT H -J, WOSZIDLO R, NAYERI C N, et al. Drag reduction on a rectangular bluff body with base flaps and fluidic oscillators[J]. Experiments in Fluids, 2015, 56(7): 151. doi: 10.1007/s00348-015-2018-3
    [46]
    GUYOT D, BOBUSCH B, PASCHEREIT C O, et al. Active combustion control using a fluidic oscillator for asymmetric fuel flow modulation[C]//Proc of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2008: 4956. doi: 10.2514/6.2008-4956.
    [47]
    ZHOU W, YUAN L, LIU Y, et al. Heat transfer of a sweeping jet impinging at narrow spacings[J]. Experimental Thermal and Fluid Science, 2019, 103: 89–98. doi: 10.1016/j.expthermflusci.2019.01.007
    [48]
    DENNAI B, BENTALEB A, CHEKIFI T, et al. Micro fluidic oscillator: a technical solution for micro mixture[J]. Advanced Materials Research, 2014, 1064: 213–218. doi: 10.4028/www.scientific.net/amr.1064.213
    [49]
    周銮良, 王士奇, 温新. 高频高速流体振荡器工作特性[J]. 航空动力学报, 2022, 37(4): 877–885. doi: 10.13224/j.cnki.jasp.20210099

    ZHOU L L, WANG S Q, WEN X. Working characteristics of a fluidic oscillator with high frequency and high speed[J]. Journal of Aerospace Power, 2022, 37(4): 877–885. doi: 10.13224/j.cnki.jasp.20210099
    [50]
    ZHOU L L, WANG S Q, SONG J S, et al. Study of internal time-resolved flow dynamics of a subsonic fluidic oscillator using fast pressure sensitive paint[J]. Experiments in Fluids, 2022, 63(1): 17. doi: 10.1007/s00348-021-03370-w
    [51]
    OSTERMANN F, WOSZIDLO R, NAYERI C N, et al. Properties of a sweeping jet emitted from a fluidic oscillator[J]. Journal of Fluid Mechanics, 2018, 857: 216–238. doi: 10.1017/jfm.2018.739
    [52]
    ADHIKARI A, SCHWEITZER T, LÜCKOFF F, et al. Design of a fluidic actuator with independent frequency and amplitude modulation for control of swirl flame dynamics[J]. Fluids, 2021, 6(3): 128. doi: 10.3390/fluids6030128
    [53]
    CAPOBIANCO V, SHANKAR P, JIANG M. Effect of slot height variation on the aerodynamic performance of a circulation control airfoil: a CFD analysis[C]//Proc of the AIAA Scitech 2019 Forum. 2019: 0579. doi: 10.2514/6.2019-0579.
    [54]
    JONES G S, MILHOLEN W E, CHAN D T, et al. A sweeping jet application on a high Reynolds number semi-span supercritical wing configuration[C]//Proc of the 35th AIAA Applied Aerodynamics Conference. 2017: 3044. doi: 10.2514/6.2017-3044.
    [55]
    JENTZSCH M, TAUBERT L, WYGNANSKI I. Using sweeping jets to trim and control a tailless aircraft model[J]. AIAA Journal, 2019, 57(6): 2322–2334. doi: 10.2514/1.j056962
    [56]
    LI Z Y, LIU Y D, ZHOU W W, et al. Lift augmentation potential of the circulation control wing driven by sweeping jets[J]. AIAA Journal, 2022, 60(8): 4677–4698. doi: 10.2514/1.J061456
    [57]
    TEN J S, POVEY T. Self-Excited Fluidic Oscillators for gas turbines cooling enhancement: experimental and computa-tional study[J]. Journal of Thermophysics and Heat Transfer, 2018, 33(2): 536–547. doi: 10.2514/1.T5261
    [58]
    BORGMANN D, PANDE A, LITTLE J C, et al. Experimental study of discrete jet forcing for flow separation control on a wall mounted hump[C]//Proc of the 55th AIAA Aerospace Sciences Meeting. 2017: 1450. doi: 10.2514/6.2017-1450.
    [59]
    WEN X, ZHOU K W, LIU P C, et al. Schlieren visualization of coflow fluidic thrust vectoring using sweeping jets[J]. AIAA Journal, 2021: 1-10. doi: 10.2514/1.J060805.
    [60]
    DORES D, MADRUGA SANTOS M M, KROTHAPALLI A, et al. Characterization of a counterflow thrust vectoring scheme on a gas turbine engine exhaust jet[C]//Proc of the 3rd AIAA Flow Control Conference. 2006: 3516. doi: 10.2514/6.2006-3516.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (130) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return