Volume 37 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
LI L K, HUANG Z, GU Y S, et al. Development of forebody asymmetric vortex control based on alternating synthetic jet and the verification on model free flight[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 96-104 doi: 10.11729/syltlx20230042
Citation: LI L K, HUANG Z, GU Y S, et al. Development of forebody asymmetric vortex control based on alternating synthetic jet and the verification on model free flight[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 96-104 doi: 10.11729/syltlx20230042

Development of forebody asymmetric vortex control based on alternating synthetic jet and the verification on model free flight

doi: 10.11729/syltlx20230042
  • Received Date: 2023-03-24
  • Accepted Date: 2023-05-19
  • Rev Recd Date: 2023-04-21
  • Publish Date: 2023-08-30
  • In order to apply the forebody vortex flow control method to high Angle of Attack (AoA) flight control of the aircraft, an asymmetric vortex control technique based on the Alternating Synthetic Jet (ASJ) flow was proposed and developed. A set of airborne alternating synthetic jet control device and a free flight verification model aircraft were developed. The feasibility of using the forebody vortex control method to realize tail spin out and high Angle of Attack attitude control was verified by semi-free flight in the wind tunnel and model free flight in open airspace. Meanwhile, by means of the flight measurement and control system and the airborne pressure measurement system, the aircraft attitude, vortex position and body surface pressure can be measured synchronously, which can effectively evaluate the efficiency of the vortex control technology. Wind tunnel semi-free flight test results show that the alternating synthetic jet can effectively control the relative position of the forebody vortices at 60° Angle of Attack, which can generate yaw moment and realize heading control at high Angle of Attack. In the flight test, the technology can realize the change of tail spin under the failure of conventional rudder, and the controllable tail spin angular velocity can reach 173 (°)/s. Based on this technology, the verification model aircraft can perform fast yaw control when flying at high Angle of Attack, and the time delay from control input to yaw angular velocity change is less than 0.5 seconds.
  • loading
  • [1]
    MALCOLM G. Forebody vortex control - A progress review[C]//Proc of the 11th Applied Aerodynamics Conference. 1993. doi: 10.2514/6.1993-3540
    [2]
    WILLIAMS D, WILLIAMS D. A review of forebody vortex control scenarios[C]//Proc of the 28th Fluid Dynamics Conference. 1997. doi: 10.2514/6.1997-1967
    [3]
    翟建, 张伟伟, 王焕玲. 大迎角前体涡控制方法综述[J]. 空气动力学学报, 2017, 35(3): 354–367. doi: 10.7638/kqdlxxb-2017.0018

    ZHAI J, ZHANG W W, WANG H L. Reviews of forebody vortex control method at high angles of attack[J]. Acta Aerodynamica Sinica, 2017, 35(3): 354–367. doi: 10.7638/kqdlxxb-2017.0018
    [4]
    REDING J P, ERICSSON L E. Maximum vortex-induced side force[J]. Journal of Spacecraft and Rockets, 1978, 15(4): 201–207. doi: 10.2514/3.57306
    [5]
    ZILLIAC G, DEGANI D, TOBAK M. Asymmetric vortices on a slender body of revolution[C]//Proc of the 28th Aerospace Sciences Meeting. 1990. doi: 10.2514/6.1990-388
    [6]
    闻静, 王延奎, 邓学蓥. 前体边条控制技术对航向静稳定性的影响[J]. 北京航空航天大学学报, 2016, 42(10): 2180–2188. doi: 10.13700/j.bh.1001-5965.2015.0746

    WEN J, WANG Y K, DENG X Y. Effect of forebody strake control technology on static directional stability[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2180–2188. doi: 10.13700/j.bh.1001-5965.2015.0746
    [7]
    王元靖, 范召林, 侯跃龙, 等. 粗糙带对细长体大迎角流动非对称性的影响[J]. 空气动力学学报, 2005, 23(3): 284–288,316. doi: 10.3969/j.issn.0258-1825.2005.03.004

    WANG Y J, FAN Z L, HOU Y L, et al. Effects of grit strip on flow asymmetry over a slender revolution body at high angles of attack[J]. Acta Aerodynamica Sinica, 2005, 23(3): 284–288,316. doi: 10.3969/j.issn.0258-1825.2005.03.004
    [8]
    MURRI D, SHAH G, DICARLO D, et al. Actuated forebody strake controls for the F-18 high alpha research vehicle[C]//Proc of the Flight Simulation and Technologies. 1993. doi: 10.2514/6.1993-3675
    [9]
    邓学蓥. 非对称涡流动特性和主动控制及其应用[C]//近代空气动力学研讨会论文集. 2005.
    [10]
    孟轩, 陈志敏, 徐敏. 细长旋成体单孔微吹气扰动控制的数值研究[J]. 弹道学报, 2008, 20(2): 37–40.

    MENG X, CHEN Z M, XU M. Numerical study on flow control with single hole microblowing[J]. Journal of Ballistics, 2008, 20(2): 37–40.
    [11]
    王延奎, 魏占峰, 邓学蓥, 等. 飞机大迎角非对称涡组合扰动主动控制研究[J]. 力学学报, 2007, 39(4): 433–441. doi: 10.3321/j.issn:0459-1879.2007.04.001

    WANG Y K, WEI Z F, DENG X Y, et al. An experimental study on forebody vortex flow control technique using combined perturbation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(4): 433–441. doi: 10.3321/j.issn:0459-1879.2007.04.001
    [12]
    顾蕴松, 明晓. 大迎角细长体侧向力的比例控制[J]. 航空学报, 2006, 27(5): 746–750. doi: 10.3321/j.issn:1000-6893.2006.05.003

    GU Y S, MING X. Proportional side force control of slender body at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5): 746–750. doi: 10.3321/j.issn:1000-6893.2006.05.003
    [13]
    高超, 倪章松, 薛明, 等. 基于新型丝状电极等离子体激励器的前体涡控制[J]. 空气动力学学报, 2021, 39(2): 39–52. doi: 10.7638/kqdlxxb-2020.0116

    GAO C, NI Z S, XUE M, et al. Forebody vortex control with a wire-based DBD plasma actuator[J]. Acta Aerody-namica Sinica, 2021, 39(2): 39–52. doi: 10.7638/kqdlxxb-2020.0116
    [14]
    孟宣市, 郭志鑫, 罗时钧, 等. 细长圆锥前体非对称涡流场的等离子体控制[J]. 航空学报, 2010, 31(3): 500–505.

    MENG X S, GUO Z X, LUO S J, et al. Control of asymmetric vortices over a slender conical forebody using plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 500–505.
    [15]
    KRAMER B, SUAREZ C, MALCOLM G, et al. Forebody vortex control with jet and slot blowing on an F/A-18[C]//Proc of the 11th Applied Aerodynamics Conference. 1993. doi: 10.2514/6.1993-3449
    [16]
    MURRI D G, SHAH G H, DICARLO D J, et al. Actuated forebody strake controls for the F-18 high-alpha research vehicle[J]. Journal of Aircraft, 1995, 32(3): 555–562. doi: 10.2514/3.46755
    [17]
    明晓. 钝体尾流的特性及控制[D]. 南京: 南京航空航天大学, 1988.
    [18]
    罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D]. 长沙: 国防科学技术大学, 2006.
    [19]
    ZHANG P F, WANG J J. Novel signal wave pattern for efficient synthetic jet generation[J]. AIAA Journal, 2007, 45(5): 1058–1065. doi: 10.2514/1.25445
    [20]
    LU Y R, WANG J S, WANG J J. Numerical investigation of efficient synthetic jets generated by multiple-frequency actuating signals[J]. Acta Mechanica Sinica, 2022, 38(1): 1–11. doi: 10.1007/s10409-021-09015-x
    [21]
    李卓奇. 飞行器前体非对称涡双合成射流控制特性研究[D]. 南京: 南京航空航天大学, 2019.
    [22]
    王奇特. 合成射流对静态与动态运动的细长体前体涡流动控制研究[D]. 南京: 南京航空航天大学, 2018.
    [23]
    顾蕴松, 王奇特, 程克明, 等. 一种通过控制前体涡改出尾旋的方法及流动控制激励器: 中国, CN105864232A[P]. 2016-08-17.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article Metrics

    Article views (128) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return