Volume 37 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
WANG L, LI Z, FENG L H. Parameter influence and optimization of energy conversion efficiency of synthetic jet actuators[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 87-95 doi: 10.11729/syltlx20230039
Citation: WANG L, LI Z, FENG L H. Parameter influence and optimization of energy conversion efficiency of synthetic jet actuators[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 87-95 doi: 10.11729/syltlx20230039

Parameter influence and optimization of energy conversion efficiency of synthetic jet actuators

doi: 10.11729/syltlx20230039
  • Received Date: 2023-03-20
  • Accepted Date: 2023-05-08
  • Rev Recd Date: 2023-05-04
  • Publish Date: 2023-08-30
  • Piezoelectric-driven synthetic jet actuators have been widely used in various flow control areas due to the characteristics of no air supply, high jet velocity and response frequency. The exit peak velocity and energy conversion efficiency are important indicators to measure the performance of piezoelectric-driven actuators. When a higher exit velocity is obtained, the energy conversion efficiency of the existing piezoelectric-driven synthetic jet actuators is low. To improve the performance of synthetic jet actuators, the exit velocity and power are measured by the hot-wire anemometer and power meter, respectively. The effects of the exit length, exit neck length, cavity height and piezoceramics thickness on the performance of actuators are analyzed. It is found that for different configuration parameters, the exit peak velocity displays a similar trend with power. Based on the optimized actuator configuration, the exit peak velocity is increased, and the energy conversion efficiency is improved in comparison to the previous results with the maximum increment of 233.3%, thereby reducing the energy consumption of actuators.
  • loading
  • [1]
    CARTER D L. Legacy aircraft drag reduction[C]//Proc of the 54th AIAA Aerospace Sciences Meeting. 2016. doi: 10.2514/6.2016-0535
    [2]
    WANG J J, FENG L H. Flow control techniques and applications[M]. Cambridge: Cambridge University Press, 2018.
    [3]
    罗振兵, 夏智勋, 邓雄, 等. 合成双射流及其流动控制技术研究进展[J]. 空气动力学学报, 2017, 35(2): 252–264. doi: 10.7638/kqdlxxb-2017.0053

    LUO Z B, XIA Z X, DENG X, et al. Research progress of dual synthetic jets and its flow control technology[J]. Acta Aerodynamica Sinica, 2017, 35(2): 252–264. doi: 10.7638/kqdlxxb-2017.0053
    [4]
    GLEZER A, AMITAY M. Synthetic jets[J]. Annual Review of Fluid Mechanics, 2002, 34: 503–529. doi: 10.1146/annurev.fluid.34.090501.094913
    [5]
    罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 35(2): 221–234. doi: 10.6052/1000-0992-2005-2-J2004-044

    LUO Z B, XIA Z X. Advances in synthetic jet technology and applications in flow control[J]. Advances in Mechanics, 2005, 35(2): 221–234. doi: 10.6052/1000-0992-2005-2-J2004-044
    [6]
    张攀峰, 王晋军, 冯立好. 零质量射流技术及其应用研究进展[J]. 中国科学(E辑), 2008, 38(3): 321–349. doi: 10.3321/j.issn:1006-9275.2008.03.001

    ZHANG P F, WANG J J, FENG L H. Research progress of zero-mass jet technology and its application[J]. Science in China Series E:Technological Sciences, 2008, 38(3): 321–349. doi: 10.3321/j.issn:1006-9275.2008.03.001
    [7]
    吴继飞, 罗新福, 徐来武, 等. 活塞式合成射流技术及其应用研究[J]. 实验流体力学, 2014, 28(6): 61–65. doi: 10.11729/syltlx20130076

    WU J F, LUO X F, XU L W, et al. Investigation on piston-typed synthetic j et technology and its application[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6): 61–65. doi: 10.11729/syltlx20130076
    [8]
    TANG H, ZHONG S, JABBAL M, et al. Towards the design of synthetic-jet actuators for full-scale flight conditions: Part 2: Low-dimensional performance prediction models and actuator design method[J]. Flow, Turbulence and Combustion, 2007, 78(3): 309–329. doi: 10.1007/s10494-006-9061-3
    [9]
    李斌斌, 姚勇, 顾蕴松, 等. 基于合成射流的二维后台阶分离流主动控制[J]. 航空学报, 2016, 37(6): 1753–1762. doi: 10.7527/S1000-6893.2016.0014

    LI B B, YAO Y, GU Y S, et al. Active control of 2D backward facing step separated flow based on synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6): 1753–1762. doi: 10.7527/S1000-6893.2016.0014
    [10]
    张振辉, 李栋. 合成射流激励器的特性及其后台阶流动控制应用[J]. 机械工程学报, 2018, 54(6): 224–232. doi: 10.3901/JME.2018.06.224

    ZHANG Z H, LI D. Characteristics of a synthetic jet actuator and its application on control of flow over a backward facing step[J]. Journal of Mechanical Engineering, 2018, 54(6): 224–232. doi: 10.3901/JME.2018.06.224
    [11]
    赵国庆, 招启军, 顾蕴松, 等. 合成射流对失速状态下翼型大分离流动控制的试验研究[J]. 力学学报, 2015, 47(2): 351–355. doi: 10.6052/0459-1879-14-134

    ZHAO G Q, ZHAO Q J, GU Y S, et al. Experimental investigation of synthetic jet control on large flow separation of airfoil during stall[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 351–355. doi: 10.6052/0459-1879-14-134
    [12]
    杨升科, 郭奇灵, 罗振兵, 等. 基于合成射流的机翼溢流冰防护实验[J]. 航空动力学报, 2020, 35(11): 2364–2370. doi: 10.13224/j.cnki.jasp.2020.11.013

    YANG S K, GUO Q L, LUO Z B, et al. Experiment on airfoil runback ice protection based on synthetic jet[J]. Journal of Aerospace Power, 2020, 35(11): 2364–2370. doi: 10.13224/j.cnki.jasp.2020.11.013
    [13]
    ZHANG B L, LIU H, LI Y Y, et al. Experimental study of coaxial jets mixing enhancement using synthetic jets[J]. Applied Sciences, 2021, 11(2): 803. doi: 10.3390/app11020803
    [14]
    JABBAL M, JEYALINGAM J. Towards the noise reduction of piezoelectrical-driven synthetic jet actuators[J]. Sensors and Actuators A: Physical, 2017, 266: 273–284. doi: 10.1016/j.sna.2017.09.036
    [15]
    曹永飞, 顾蕴松, 韩杰星. 流体推力矢量技术验证机研制及飞行试验研究[J]. 空气动力学学报, 2019, 37(4): 593–599. doi: 10.7638/kqdlxxb-2017.0202

    CAO Y F, GU Y S, HAN J X. Development and flight testing of a fluidic thrust vectoring demonstrator[J]. Acta Aerodynamica Sinica, 2019, 37(4): 593–599. doi: 10.7638/kqdlxxb-2017.0202
    [16]
    WANG L, FENG L H, WANG J J, et al. Evolution of low-aspect-ratio rectangular synthetic jets in a quiescent environment[J]. Experiments in Fluids, 2018, 59(6): 1–16. doi: 10.1007/s00348-018-2544-x
    [17]
    WANG L, FENG L H, WANG J J, et al. Characteristics and mechanism of mixing enhancement for noncircular synthetic jets at low Reynolds number[J]. Experimental Thermal and Fluid Science, 2018, 98: 731–743. doi: 10.1016/j.expthermflusci.2018.06.021
    [18]
    WANG L, FENG L H, XU Y. Laminar-to-transitional evolution of three-dimensional vortical structures in a low-aspect-ratio rectangular synthetic jet[J]. Experimental Thermal and Fluid Science, 2019, 104: 129–140. doi: 10.1016/j.expthermflusci.2019.02.004
    [19]
    GOMES L, CROWTHER W. Towards a practical piezoceramic diaphragm based synthetic jet actuator for high subsonic applications - effect of chamber and orifice depth on actuator peak velocity[C]//Proc of the 3rd AIAA Flow Control Conference. 2006. doi: 10.2514/6.2006-2859
    [20]
    VAN BUREN T, WHALEN E, AMITAY M. Achieving a high-speed and momentum synthetic jet actuator[J]. Journal of Aerospace Engineering, 2016, 29(2): 04015040. doi: 10.1061/(asce)as.1943-5525.0000530
    [21]
    GUNGORDU B. Jet velocity enhancement of synthetic jets: unimorph vs. bimorph piezoelectric actuator[C]//Proc of the AIAA SCITECH 2022 Forum. 2022. doi: 10.2514/6.2022-0710
    [22]
    CROWTHER W J, GOMES L T. An evaluation of the mass and power scaling of synthetic jet actuator flow control technology for civil transport aircraft applications[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2008, 222(5): 357–372. doi: 10.1243/09596518jsce519
    [23]
    VAN BUREN T, WHALEN E, AMITAY M. Vortex formation of a finite-span synthetic jet: effect of rectangular orifice geometry[J]. Journal of Fluid Mechanics, 2014, 745: 180–207. doi: 10.1017/jfm.2014.77
    [24]
    JEYALINGAM J, JABBAL M. Optimization of Synthetic Jet Actuator design for noise reduction and velocity enhancement[C]//Proc of the 8th AIAA Flow Control Conference. 2016. doi: 10.2514/6.2016-4236
    [25]
    LOCKERBY D A, CARPENTER P W. Modeling and design of microjet actuators[J]. AIAA Journal, 2004, 42(2): 220–227. doi: 10.2514/1.9091
    [26]
    RIZZETTA D P, VISBAL M R, STANEK M J. Numerical investigation of synthetic-jet flowfields[J]. AIAA Journal, 1999, 37(8): 919–927. doi: 10.2514/2.811
    [27]
    MANE P, MOSSI K, ROSTAMI A, et al. Piezoelectric actuators as synthetic jets: Cavity dimension effects[J]. Journal of Intelligent Material Systems and Structures, 2007, 18(11): 1175–1190. doi: 10.1177/1045389x06075658
    [28]
    CHEN F J, YAO C, BEELER G, et al. Development of synthetic jet actuators for active flow control at NASA Langley[C]//Proc of the Fluids 2000 Conference and Exhibit. 2000. doi: 10.2514/6.2000-2405
    [29]
    邓雄. 合成双射流矢量控制特性及其强化换热应用研究[D]. 长沙: 国防科学技术大学, 2015.

    DENG X. Research on vector-controlling characteristic of dual synthetic jets and its applications in heat transfer enhancement[D]. Changsha: National University of Defense Technology, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (153) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return