Volume 38 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
WANG L, CHEN Z F, CHEN X, et al. Singularity distribution entropy analysis of impulsive acoustic signals[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 91-102 doi: 10.11729/syltlx20230037
Citation: WANG L, CHEN Z F, CHEN X, et al. Singularity distribution entropy analysis of impulsive acoustic signals[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 91-102 doi: 10.11729/syltlx20230037

Singularity distribution entropy analysis of impulsive acoustic signals

doi: 10.11729/syltlx20230037
  • Received Date: 2023-03-23
  • Accepted Date: 2023-06-01
  • Rev Recd Date: 2023-05-17
  • Available Online: 2024-04-08
  • Publish Date: 2024-02-25
  • In order to effectively analyze and calibrate the singularity difference of impulsive acoustic signals in complex environment with low signal-to-noise ratio, a singularity distribution entropy features analysis model based on the mode maximum theory is proposed. Firstly, the impulsive signal is normalized and wavelet transform is carried out to calculate the mode maximum and its specific distribution at each scale, which can reflect the family of mode maximum curves with singular differences. In order to describe the difference quantitatively, entropy is used to describe the distribution of the maximum points which constitute the family of modal maximum curves, and a singular distribution entropy feature model which can effectively analyze the singularity difference of impulsive signals is constructed. The model can describe the singularity difference of signals at low signal-to-noise ratio. Experiments show that the accuracy of 89.25% and 87.63% of typical helicopter impulsive signals (blade-vortex interaction signals and high-speed impulsive signals) can be obtained when the signal to noise ratio is −6dB.
  • loading
  • [1]
    ROMANI G, CASALINO D. Rotorcraft blade-vortex interaction noise prediction using the Lattice-Boltzmann method[J]. Aerospace Science and Technology, 2019, 88: 147–157. doi: 10.1016/j.ast.2019.03.029
    [2]
    TAYLOR R B. Helicopter rotor blade design for minimum vibration[R]. NASA-CR-3825, 1984.
    [3]
    PADFIELD G D. helicopter flight dynamics: the theory and application of flying qualities and simulation modeling[M]. 2nd ed. Oxford: Blackwell Pub, 2007.
    [4]
    KAPOOR R, RAMASAMY S, GARDI A, et al. Acoustic sensors for air and surface navigation applications[J]. Sensors, 2018, 18(2): 499. doi: 10.3390/s18020499
    [5]
    MUHR P, JOHNSON A C, SELANDER J, et al. Noise exposure and hearing impairment in air force pilots[J]. Aerospace Medicine and Human Performance, 2019, 90(9): 757–763. doi: 10.3357/AMHP.5353.2019
    [6]
    ZHAO Y Y, SHI Y J, XU G H. Helicopter blade-vortex interaction airload and noise prediction using coupling CFD/VWM method[J]. APPLIED SCIENCES, 2017, 7(4): 381. doi: 10.3390/APP7040381
    [7]
    STEPHENSON J H, TINNEY C E, GREENWOOD E, et al. Time frequency analysis of sound from a maneuvering rotorcraft[J]. Journal of Sound and Vibration, 2014, 333(21): 5324–5339. doi: 10.1016/j.jsv.2014.05.018
    [8]
    NARAYAN Y, KUMAR S. Pattern recognition of semg signals using dwt based feature and svm classifier[J]. International Journal of Advanced Science and Technology, 2020, 29(10S): 2257–2266.
    [9]
    SAHOO S, KANUNGO B, BEHERA S, et al. Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities[J]. Measurement, 2017, 108: 55–66. doi: 10.1016/j.measurement.2017.05.022
    [10]
    GOUGAM F, RAHMOUNE C, BENAZZOUZ D, et al. Bearing faults classification under various operation modes using time domain features, singular value decomposition, and fuzzy logic system[J]. Advances in Mechanical Engineering, 2020, 12(10). doi: 10.1177/1687814020967874
    [11]
    JIANG J J, MA J Y, CHEN C, et al. SuperPCA: a superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4581–4593. doi: 10.1109/tgrs.2018.2828029
    [12]
    POLACSEK C, ZIBI J, ROUZAUD O, et al. Helicopter rotor noise prediction using ONERA and DLR euler/kirchhoff methods[J]. Journal of the American Helicopter Society, 1999, 44(2): 121–131. doi: 10.4050/jahs.44.121
    [13]
    KENNETH, S, BRENTNER. Prediction of helicopter rotor discrete frequency noise for three scale models[J]. Journal of Aircraft, 1988. doi: 10.2514/3.45598
    [14]
    BRENTNER K S, BRES G A, PEREZ G, et al. Maneuvering rotorcraft noise prediction: a new code for a new problem[C]//Proc of AHS Aerodynamics, Acoustics and Test Evaluation Specialist Meeting. 2022.
    [15]
    MALLAT S, HWANG W L. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory, 1992, 38(2): 617–643. doi: 10.1109/18.119727
    [16]
    MALLAT S, ZHONG S. Characterization of signals from multiscale edges[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(7): 710–732. doi: 10.1109/34.142909
    [17]
    SADLER B M, SWAMI A. Analysis of wavelet transform multiscale products for step detection and estimation[J]. IEEE Transactions on Information Theory. 1999, 45(3): 1043-1051. doi: 10.1109/18.761341.
    [18]
    TU C L, HWANG W L, HO J. Analysis of singularities from modulus maxima of complex wavelets[J]. IEEE Transactions on Information Theory, 2005, 51(3): 1049–1062. doi: 10.1109/TIT.2004.842706
    [19]
    HSUNG T C, LUN D P K, SIU W C. Denoising by singularity detection[J]. IEEE Transactions on Signal Processing, 1999, 47(11): 3139–3144. doi: 10.1109/78.796450
    [20]
    MIAO Q, HUANG H Z, FAN X F. Singularity detection in machinery health monitoring using Lipschitz exponent function[J]. Journal of Mechanical Science and Technology, 2007, 21(5): 737–744. doi: 10.1007/BF02916351
    [21]
    FRIEDLANDER B, PORAT B. Detection of transient signals by the gabor representation[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(2): 169–180. doi: 10.1109/29.21680
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (698) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return