Volume 37 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
CHEN J, ZONG H H, SONG H M, et al. AI-based real-time noise reduction of flow field pressure signals under plasma electromagnetic interference[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 59-65 doi: 10.11729/syltlx20230030
Citation: CHEN J, ZONG H H, SONG H M, et al. AI-based real-time noise reduction of flow field pressure signals under plasma electromagnetic interference[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 59-65 doi: 10.11729/syltlx20230030

AI-based real-time noise reduction of flow field pressure signals under plasma electromagnetic interference

doi: 10.11729/syltlx20230030
  • Received Date: 2023-03-13
  • Accepted Date: 2023-04-27
  • Rev Recd Date: 2023-04-25
  • Publish Date: 2023-08-30
  • For the reliable sensing requirements of closed-loop active flow control, a real-time noise reduction method based on the artificial neural network was proposed for solving the plasma actuation electromagnetic interference on flow field signals. Taking the dynamic pressure sensor installed on the cylinder surface as the experimental subject, the “dense peak” type noise signals of alternating current dielectric barrier discharge (AC–DBD) and the “sparse spike” type noise signals of nanosecond pulsed dielectric barrier discharge (NS–DBD) were collected respectively. Artificial synthetic noise signals were used for supervised learning, and the generalization of the artificial neural network model was tested and verified. The results show that this method can effectively suppress the influence of electromagnetic interference caused by plasma actuation and restore the real pressure signal. It has better denoising performance on the AC–DBD “dense peak” type noise signal. The denoised signal is smoother and better fitted with the real one. This model is also applied to the real flow field pressure measurement, and the accuracy of the denoising network prediction is further verified by comparing the mean value of the denoised signal and the real signal.
  • loading
  • [1]
    李应红, 吴云. 等离子体激励调控流动与燃烧的研究进展与展望[J]. 中国科学(技术科学), 2020, 50(10): 1252–1273. doi: 10.1360/SST-2020-0111

    LI Y H, WU Y. Research progress and outlook of flow control and combustion control using plasma actuation[J]. Scientia Sinica (Technologica), 2020, 50(10): 1252–1273. doi: 10.1360/SST-2020-0111
    [2]
    赵志杰, 罗振兵, 刘杰夫, 等. 基于分布式合成双射流的飞行器无舵面三轴姿态控制飞行试验[J]. 力学学报, 2022, 54(5): 1220–1228. doi: 10.6052/0459-1879-21-586

    ZHAO Z J, LUO Z B, LIU J F, et al. Flight test of aircraft three-axis attitude control without rudders based on distributed dual synthetic jets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1220–1228. doi: 10.6052/0459-1879-21-586
    [3]
    姚张奕, 史志伟, 董益章. 深度强化学习在翼型分离流动控制中的应用[J]. 实验流体力学, 2022, 36(3): 55–64. doi: 10.11729/syltlx20210085

    YAO Z Y, SHI Z W, DONG Y Z. Deep reinforcement learning for the control of airfoil flow separation[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 55–64. doi: 10.11729/syltlx20210085
    [4]
    兰子奇, 史志伟, 孙琪杰, 等. AC–DBD等离子体激励对L形截面钝体风荷载减阻的实验研究[J]. 实验流体力学, 2021, 35(2): 83–91. doi: 10.11729/syltlx20200095

    LAN Z Q, SHI Z W, SUN Q J, et al. Experimental study on drag reduction of L-shaped bluff body by AC–DBD plasma actuation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 83–91. doi: 10.11729/syltlx20200095
    [5]
    CHENG X Q, WONG C W, HUSSAIN F, et al. Flat plate drag reduction using plasma-generated streamwise vortices[J]. Journal of Fluid Mechanics, 2021, 918: A24. doi: 10.1017/jfm.2021.311
    [6]
    DUONG A H, CORKE T C, THOMAS F O. Characteristics of drag-reduced turbulent boundary layers with pulsed-direct-current plasma actuation[J]. Journal of Fluid Mechanics, 2021, 915: A113. doi: 10.1017/jfm.2021.167
    [7]
    LI Z, SHI Z W, DU H, et al. Analysis of flow separation control using nanosecond-pulse discharge plasma actuators on a flying wing[J]. Plasma Science and Technology, 2018, 20(11): 116–125.
    [8]
    周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 90–132. doi: 10.7498/aps.68.20190683

    ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 90–132. doi: 10.7498/aps.68.20190683
    [9]
    WU B, GAO C, LIU F, et al. Reduction of turbulent boundary layer drag through dielectric-barrier-discharge plasma actuation based on the Spalding formula[J]. Plasma Science and Technology, 2019, 21(4): 107–114.
    [10]
    金元中, 郑博睿, 喻明浩, 等. 滑动放电等离子体控制细长体头部背风区非对称涡实验研究[J]. 实验流体力学, 2022, 36(5): 43–51. doi: 10.11729/syltlx20210101

    JIN Y Z, ZHENG B R, YU M H, et al. Experimental study on flow control of asymmetric vortex over the leeward region of the head of the slender body by sliding discharge plasma actuation[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 43–51. doi: 10.11729/syltlx20210101
    [11]
    张卫国, 史喆羽, 李国强, 等. 风力机翼型动态失速等离子体流动控制数值研究[J]. 力学学报, 2020, 52(6): 1678–1689. doi: 10.6052/0459-1879-20-090

    ZHANG W G, SHI Z Y, LI G Q, et al. Numerical study on dynamic stall flow control for wind turbine airfoil using plasma actuator[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1678–1689. doi: 10.6052/0459-1879-20-090
    [12]
    黄广靖, 戴玉婷, 杨超. 低雷诺数俯仰振荡翼型等离子体流动控制[J]. 力学学报, 2021, 53(1): 136–155. doi: 10.6052/0459-1879-20-183

    HUANG G J, DAI Y T, YANG C. Plasma-based flow control on pitching airfoil at low Reynolds number[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 136–155. doi: 10.6052/0459-1879-20-183
    [13]
    梁华, 李应红, 程邦勤, 等. 等离子体气动激励抑制翼型失速分离的仿真研究[J]. 航空动力学报, 2008, 23(5): 777–783. doi: 10.13224/j.cnki.jasp.2008.05.004

    LIANG H, LI Y H, CHENG B Q, et al. Numerical simulation on airfoil stall separation suppression by plasma aerodynamic actuation[J]. Journal of Aerospace Power, 2008, 23(5): 777–783. doi: 10.13224/j.cnki.jasp.2008.05.004
    [14]
    杜海, 史志伟, 程克明, 等. 纳秒脉冲等离子体分离流控制频率优化及涡运动过程分析[J]. 航空学报, 2016, 37(7): 2102–2111.

    DU H, SHI Z W, CHENG K M, et al. Frequency optimization and vortex dynamic process analysis of separated flow control by nanosecond pulsed plasma discharge[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7): 2102–2111.
    [15]
    郝琳召, 张彬乾, 陈真利. 纳秒等离子体激励控制翼型流动分离机理研究[J]. 航空工程进展, 2014, 5(1): 25–32. doi: 10.3969/j.issn.1674-8190.2014.01.005

    HAO L Z, ZHANG B Q, CHEN Z L. Investigation on mechanisms of separation control over an airfoil using nanosecond pulsed plasma actuator[J]. Advances in Aeronautical Science and Engineering, 2014, 5(1): 25–32. doi: 10.3969/j.issn.1674-8190.2014.01.005
    [16]
    MENG X S, LONG Y X, WANG J L, et al. Dynamics and control of the vortex flow behind a slender conical forebody by a pair of plasma actuators[J]. Physics of Fluids, 2018, 30(2): 024101. doi: 10.1063/1.5005514
    [17]
    孟宣市, 惠伟伟, 易贤, 等. AC–SDBD等离子体激励防/除冰研究现状与展望[J]. 空气动力学学报, 2022, 40(2): 31–49. doi: 10.7638/kqdlxxb-2021.0159

    MENG X S, HUI W W, YI X, et al. Anti-/ De-icing by AC–SDBD plasma actuators: status and outlook[J]. Acta Aerodynamica Sinica, 2022, 40(2): 31–49. doi: 10.7638/kqdlxxb-2021.0159
    [18]
    CAI J S, TIAN Y Q, MENG X S, et al. An experimental study of icing control using DBD plasma actuator[J]. Experiments in Fluids, 2017, 58(8): 102. doi: 10.1007/s00348-017-2378-y
    [19]
    WEI B, WU Y, LIANG H, et al. SDBD based plasma anti-icing: A stream-wise plasma heat knife configuration and criteria energy analysis[J]. International Journal of Heat and Mass Transfer, 2019, 138: 163–172. doi: 10.1016/j.ijheatmasstransfer.2019.04.051
    [20]
    LATTARI F, GONZALEZ LEON B, ASARO F, et al. Deep learning for SAR image despeckling[J]. Remote Sensing, 2019, 11(13): 1532. doi: 10.3390/rs11131532
    [21]
    ZHU W Q, MOUSAVI S M, BEROZA G C. Seismic signal denoising and decomposition using deep neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9476–9488. doi: 10.1109/TGRS.2019.2926772
    [22]
    TIAN C W, FEI L K, ZHENG W X, et al. Deep learning on image denoising: an overview[J]. Neural Networks, 2020, 131: 251–275. doi: 10.1016/j.neunet.2020.07.025
    [23]
    GOYAL B, DOGRA A, AGRAWAL S, et al. Image denoising review: from classical to state-of-the-art approaches[J]. Information Fusion, 2020, 55: 220–244. doi: 10.1016/j.inffus.2019.09.003
    [24]
    ANWAR S, BARNES N. Real image denoising with feature attention[C]//Proc of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2020: 3155-3164.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(8)

    Article Metrics

    Article views (146) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return