Volume 37 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
HUANG Y J, GONG X A, MA X Y, et al. Experimental study on the thickness dependence of bionics coverts for the wing stall control[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 105-115 doi: 10.11729/syltlx20230028
Citation: HUANG Y J, GONG X A, MA X Y, et al. Experimental study on the thickness dependence of bionics coverts for the wing stall control[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 105-115 doi: 10.11729/syltlx20230028

Experimental study on the thickness dependence of bionics coverts for the wing stall control

doi: 10.11729/syltlx20230028
  • Received Date: 2023-03-09
  • Accepted Date: 2023-06-27
  • Rev Recd Date: 2023-05-27
  • Publish Date: 2023-08-30
  • Bio-inspired by the covert feathers on bird wings, the artificial coverts of different thicknesses were designed by using flexible materials, and they were installed at different locations on the upper side of a NACA0018 wing model at a high angle of attack. In the wind tunnel experiments, the hot-wire anemometer was used to measure the velocity distributions in the wake flow, and therefore the time-averaged and turbulent fluctuation velocities were obtained. The flow separation control effectiveness of the different thicknesses were analyzed by the time-averaged velocity profiles, the root-mean-square velocitydistributions of the turbulent fluctuations as well as their Power Spectral Density (PSD). The results show that, the thin coverts near the leading-edge effectively reduce the distance between the leading-edge shear layer and the upper surface, whereas installed near the trailing-edge, the flow field around the airfoil has mere change. On the other hand, for the thick coverts, the flow separation control effectiveness is better than those near the leading-edge. Based on the multi-scale wavelet analysis, the artificial coverts improve the transformation of low-frequency large-scale coherent structures to high-frequency small-scale ones by adaptively fluttering and flapping motions, which is highly effective for flow separation control.
  • loading
  • [1]
    HAND B, KELLY G, CASHMAN A. Numerical simulation of a vertical axis wind turbine airfoil experiencing dynamic stall at high Reynolds numbers[J]. Computers & Fluids, 2017, 149: 12–30. doi: 10.1016/j.compfluid.2017.02.021
    [2]
    乔渭阳, 仝帆, 陈伟杰, 等. 仿生学气动噪声控制研究的历史、现状和进展[J]. 空气动力学学报, 2018, 36(1): 98–121. doi: 10.7638/kqdlxxb-2017.0162

    QIAO W Y, TONG F, CHEN W J, et al. Review on aerodynamic noise reduction with bionic configuration[J]. Acta Aerodynamica Sinica, 2018, 36(1): 98–121. doi: 10.7638/kqdlxxb-2017.0162
    [3]
    GRAHAM R R. The silent flight of owls[J]. The Journal of the Royal Aeronautical Society, 1934, 38(286): 837–843. doi: 10.1017/s0368393100109915
    [4]
    HOWE M S. Noise produced by a sawtooth trailing edge[J]. The Journal of the Acoustical Society of America, 1991, 90(1): 482–487. doi: 10.1121/1.401273
    [5]
    HOWE M S. Aerodynamic noise of a serrated trailing edge[J]. Journal of Fluids and Structures, 1991, 5(1): 33–45. doi: 10.1016/0889-9746(91)80010-b
    [6]
    CHEN K, LIU Q P, LIAO G H, et al. The sound suppression characteristics of wing feather of owl (Bubo bubo)[J]. Journal of Bionic Engineering, 2012, 9(2): 192–199. doi: 10.1016/S1672-6529(11)60109-1
    [7]
    WINZEN A, ROIDL B, KLÄN S, et al. Particle-image velocimetry and force measurements of leading-edge serrations on owl-based wing models[J]. Journal of Bionic Engineering, 2014, 11(3): 423–438. doi: 10.1016/s1672-6529(14)60055-x
    [8]
    WANG L, LIU X M. Aeroacoustic investigation of asymmetric oblique trailing-edge serrations enlighted by owl wings[J]. Physics of Fluids, 2022, 34(1): 015113. doi: 10.1063/5.0076272
    [9]
    杨景茹, 杨爱玲, 陈二云, 等. 锯齿尾缘叶片气动特性和绕流流场的数值研究[J]. 航空动力学报, 2017, 32(4): 900–908. doi: 10.13224/j.cnki.jasp.2017.04.015

    YANG J R, YANG A L, CHEN E Y, et al. Numerical research on aerodynamic characteristics and flow fields of airfoil with serrated trailing edge[J]. Journal of Aerospace Power, 2017, 32(4): 900–908. doi: 10.13224/j.cnki.jasp.2017.04.015
    [10]
    AVALLONE F, PRÖBSTING S, RAGNI D. Three-dimensional flow field over a trailing-edge serration and implications on broadband noise[J]. Physics of Fluids, 2016, 28(11): 117101. doi: 10.1063/1.4966633
    [11]
    JONES L E, SANDBERG R D. Acoustic and hydrodynamic analysis of the flow around an aerofoil with trailing-edge serrations[J]. Journal of Fluid Mechanics, 2012, 706: 295–322. doi: 10.1017/jfm.2012.254
    [12]
    ARCE C, RAGNI D, PRÖBSTING S, et al. Flow field around a serrated trailing edge at incidence[C]//Proc of the 33rd Wind Energy Symposium, Kissimmee. 2015: 0991. doi: 10.2514/6.2015-0991
    [13]
    BRÜCKER C, WEIDNER C. Influence of self-adaptive hairy flaps on the stall delay of an airfoil in ramp-up motion[J]. Journal of Fluids and Structures, 2014, 47: 31–40. doi: 10.1016/j.jfluidstructs.2014.02.014
    [14]
    李彪辉, 范子椰, 刘丽霞, 等. 柔性旋涡发生器对翼型前缘分离的自适应控制[J]. 气体物理, 2020, 5(5): 56–62. doi: 10.19527/j.cnki.2096-1642.0798

    LI B H, FAN Z Y, LIU L X, et al. Adaptive control of wing leading edge separation by flexible vortex generator[J]. Physics of Gases, 2020, 5(5): 56–62. doi: 10.19527/j.cnki.2096-1642.0798
    [15]
    巩绪安, 张鑫, 马兴宇, 等. 柔性锯齿形尾缘流动分离控制实验的多尺度相干结构研究[J]. 实验流体力学, 2022, 36(6): 19–27. doi: 10.11729/syltlx20210041

    GONG X A, ZHANG X, MA X Y, et al. Experimental study on flow separation control by flexible serrated trailing edge based on multi-scale coherent structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 19–27. doi: 10.11729/syltlx20210041
    [16]
    巩绪安, 张鑫, 马兴宇, 等. 仿生学覆羽控制翼型流动分离实验[J]. 空气动力学学报, 2021, 39(6): 184–195. doi: 10.7638/kqdlxxb-2021.0177

    GONG X A, ZHANG X, MA X Y, et al. Experiments on flow separation control with bionic coverts[J]. Acta Aerodynamica Sinica, 2021, 39(6): 184–195. doi: 10.7638/kqdlxxb-2021.0177
    [17]
    MA X Y, GONG X A, TANG Z Q, et al. Control of leading-edge separation on bioinspired airfoil with fluttering coverts[J]. Physical Review E, 2022, 105(2): 025107. doi: 10.1103/physreve.105.025107
    [18]
    LAMBERT A, YARUSEVYCH S. Effect of angle of attack on vortex dynamics in laminar separation bubbles[J]. Physics of Fluids, 2019, 31(6): 064105. doi: 10.1063/1.5100158
    [19]
    张蓉竹, 蔡邦维, 杨春林, 等. 功率谱密度的数值计算方法[J]. 强激光与粒子束, 2000, 12(6): 661–664.

    ZHANG R Z, CAI B W, YANG C L, et al. Numerical method of the power spectral density[J]. High Power Laser and Particle Beams, 2000, 12(6): 661–664.
    [20]
    赵瑞珍. 小波理论及其在图像、信号处理中的算法研究[D]. 西安: 西安电子科技大学, 2001.

    ZHAO R Z. Wavelet theory and its algorithm research in image and signal processing[D]. Xi'an: Xidian University, 2001.
    [21]
    衡彤. 小波分析及其应用研究[D]. 成都: 四川大学, 2001.

    HENG T. Research on wavelet analysis and its application[D]. Chengdu: Sichuan University, 2001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article Metrics

    Article views (120) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return