Volume 37 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
ZHANG Y, PAN C, DOU J Y, et al. Flowfield and friction characteristics downstream of mirco vortex generator in turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 48-58 doi: 10.11729/syltlx20230027
Citation: ZHANG Y, PAN C, DOU J Y, et al. Flowfield and friction characteristics downstream of mirco vortex generator in turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 48-58 doi: 10.11729/syltlx20230027

Flowfield and friction characteristics downstream of mirco vortex generator in turbulent boundary layer

doi: 10.11729/syltlx20230027
  • Received Date: 2023-03-07
  • Accepted Date: 2023-05-10
  • Rev Recd Date: 2023-05-07
  • Publish Date: 2023-08-30
  • The present work uses the stereoscopic particle image velocimetry and calibration-free dual hot-film wall shear stress measurement sensor to measure the flowfield and friction at downstream of the one array of forwards wedge Micro Vortex Generator (MVG) in the turbulent boundary layer at moderate Reynolds number. The result of flowfield measurement shows that MVG produces the streamwise velocity defect regions and streamwise vortices pairs in downstream time-averaged flowfield, which causes the second outer-peak in the spanwise pre-multiplied energy spectra. The result of proper orthogonal decomposition shows that the contribution of energy of structures induced by MVG is equivalent to the that of large-scale structures and very large-scale structures in the smooth-wall turbulent boundary layer, which also significantly affects the spatial distribution of the near-wall structures. The friction measurement experiment shows that MVG array with higher height and closer spanwise arrangement has higher friction drag reduction. The drag reduction effect of MVG lasts downstream to 80 times of its own characteristic height.
  • loading
  • [1]
    WANG W K, PAN C, WANG J J. Energy transfer structures associated with large-scale motions in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2021, 906: A14. doi: 10.1017/jfm.2020.777
    [2]
    WANG J J, PAN C, WANG J J. Characteristics of fluctuating wall-shear stress in a turbulent boundary layer at low-to-moderate Reynolds number[J]. Physical Review Fluids, 2020, 5(7): 074605. doi: 10.1103/physrevfluids.5.074605
    [3]
    LI B H, WANG K J, WANG Y F, et al. Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet[J]. Chinese Physics B, 2022, 31(2): 024702. doi: 10.1088/1674-1056/ac0da6
    [4]
    CHENG X Q, WONG C W, HUSSAIN F, et al. Flat plate drag reduction using plasma-generated streamwise vortices[J]. Journal of Fluid Mechanics, 2021, 918: A24. doi: 10.1017/jfm.2021.311
    [5]
    YAO J, CHEN X, THOMAS F, et al. Large-scale control strategy for drag reduction in turbulent channel flows[J]. Physical Review Fluids, 2017, 2(6): 062601. doi: 10.1103/physrevfluids.2.062601
    [6]
    李楠, 吴光辉, 潘翀, 等. 小肋减阻的飞行试验方法、结果和分析[J]. 力学与实践, 2023, 45(1): 10–21.

    LI N, WU G H, PAN C, et al. Flight test method, result and analysis of small rib drag reduction[J]. Mechanics in Engineering, 2023, 45(1): 10–21.
    [7]
    刘沛清, 张雯, 郭昊. 大型运输机的减阻技术[J]. 力学与实践, 2018, 40(2): 129–139, 154.

    LIU P Q, ZHANG W, GUO H. Drag reduction technique for large transport aircraft[J]. Mechanics in Engineering, 2018, 40(2): 129–139, 154.
    [8]
    李晓辉, 王宏伟, 张淼, 等. Tomo-PIV亚跨声速风洞应用探索[J]. 实验流体力学, 2020, 34(4): 44–52. doi: 10.11729/syltlx20190061

    LI X H, WANG H W, ZHANG M, et al. Application exploration of Tomo-PIV in the subsonic and transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 44–52. doi: 10.11729/syltlx20190061
    [9]
    刘丽霞, 王康俊, 王鑫蔚, 等. 沟槽超疏水复合壁面湍流边界层减阻机理的TRPIV实验研究[J]. 实验流体力学, 2021, 35(1): 117–125. doi: 10.11729/syltlx20200001

    LIU L X, WANG K J, WANG X W, et al. TRPIV experimental investigation of drag reduction mechanism in turbulent boundary layer over superhydrophobic-riblet surface[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 117–125. doi: 10.11729/syltlx20200001
    [10]
    陈正云, 张清福, 潘翀, 等. 超疏水旋转圆盘气膜层减阻的实验研究[J]. 实验流体力学, 2021, 35(3): 52–59. doi: 10.11729/syltlx20200025

    CHEN Z Y, ZHANG Q F, PAN C, et al. An experimental study on drag reduction of superhydrophobic rotating disk with air plastron[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 52–59. doi: 10.11729/syltlx20200025
    [11]
    PARK J, CHOI H. Effects of uniform blowing or suction from a spanwise slot on a turbulent boundary layer flow[J]. Physics of Fluids, 1999, 11(10): 3095–3105. doi: 10.1063/1.870167
    [12]
    DU Y Q, SYMEONIDIS V, KARNIADAKIS G E. Drag reduction in wall-bounded turbulence via a transverse travelling wave[J]. Journal of Fluid Mechanics, 2002, 457: 1–34. doi: 10.1017/s0022112001007613
    [13]
    黄红波, 陆芳. 涡流发生器应用发展进展[J]. 武汉理工大学学报(交通科学与工程版), 2011, 35(3): 611–614, 618.

    HUANG H B, LU F. Research progress of vortex generator application[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2011, 35(3): 611–614, 618.
    [14]
    刘刚, 刘伟, 牟斌, 等. 涡流发生器数值计算方法研究[J]. 空气动力学学报, 2007, 25(2): 241–244.

    LIU G, LIU W, MOU B, et al. CFD numerical simulation investigation of vortex generators[J]. Acta Aerodynamica Sinica, 2007, 25(2): 241–244.
    [15]
    倪亚琴. 涡流发生器研制及其对边界层的影响研究[J]. 空气动力学学报, 1995, 13(1): 110–116.

    NI Y Q. Development of the vortex-generator and study on the effect of vortex-generator on boundary layer[J]. Acta Aerodynamica Sinica, 1995, 13(1): 110–116.
    [16]
    LIN J C, HOWARD F G, SELBY G V. Small submerged vortex generators for turbulent flow separation control[J]. Journal of Spacecraft and Rockets, 1990, 27(5): 503–507. doi: 10.2514/3.26172
    [17]
    PUJALS G, DEPARDON S, COSSU C. Drag reduction of a 3D bluff body using coherent streamwise streaks[J]. Experiments in Fluids, 2010, 49(5): 1085–1094. doi: 10.1007/s00348-010-0857-5
    [18]
    MA X Y, GEISLER R, SCHRÖDER A. Experimental investigation of three-dimensional vortex structures down-stream of vortex generators over a backward-facing step[J]. Flow, Turbulence and Combustion, 2017, 98(2): 389–415. doi: 10.1007/s10494-016-9768-8
    [19]
    YAO C, LIN J, ALLEN B. Flowfield measurement of device-induced embedded streamwise vortex on a flat plate[C]//Proc of the 1st Flow Control Conference, St. Louis, Missouri. 2002. doi: 10.2514/6.2002-3162
    [20]
    LIN J C. Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in Aero-space Sciences, 2002, 38(4-5): 389–420. doi: 10.1016/S0376-0421(02)00010-6
    [21]
    ASHILL P R, FULKER J L, HACKETT K C. A review of recent developments in flow control[J]. The Aeronautical Journal, 2005, 109(1095): 205–232. doi: 10.1017/s0001924000005200
    [22]
    ZAMAN K B M Q, HIRT S M, BENCIC T J. Boundary layer flow control by an array of ramp-shaped vortex generators[R]. NASA/TM—2012-217437, 2012.
    [23]
    褚胡冰, 陈迎春, 张彬乾, 等. 增升装置微型涡流发生器数值模拟方法研究[J]. 航空学报, 2012, 33(1): 11–21.

    CHU H B, CHEN Y C, ZHANG B Q, et al. Investigation of numerical simulation technique for micro vortex generators applied to high lift system[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1): 11–21.
    [24]
    GIBERTINI G, BONIFACE J C, ZANOTTI A, et al. Helicopter drag reduction by vortex generators[J]. Aerospace Science and Technology, 2015, 47: 324–339. doi: 10.1016/j.ast.2015.10.004
    [25]
    张进, 刘景源, 张彬乾. 微型涡流发生器对超临界翼型减阻机理实验与数值分析[J]. 实验流体力学, 2016, 30(4): 37–41. doi: 10.11729/syltlx20150157

    ZHANG J, LIU J Y, ZHANG B Q. Experimental and CFD study on the mechanism of supercritical airfoil drag reduction with micro vortex generators[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 37–41. doi: 10.11729/syltlx20150157
    [26]
    易海明, 申俊琦, 潘翀, 等. 平流层飞艇纵向气动特性及减阻实验研究[J]. 空气动力学学报, 2014, 32(5): 641–645,653. doi: 10.7638/kqdlxxb-2013.0032

    YI H M, SHEN J Q, PAN C, et al. Experimental investigation on the longitudinal aerodynamic performance and drag reduction of a stratospheric airship[J]. Acta Aerodynamica Sinica, 2014, 32(5): 641–645,653. doi: 10.7638/kqdlxxb-2013.0032
    [27]
    CHAUHAN K A, MONKEWITZ P A, NAGIB H M. Criteria for assessing experiments in zero pressure gradient boundary layers[J]. Fluid Dynamics Research, 2009, 41(2): 021404. doi: 10.1088/0169-5983/41/2/021404
    [28]
    WANG S, GHAEMI S. Three-dimensional wake of non-conventional vortex generators[J]. AIAA Journal, 2019, 57(3): 949–961. doi: 10.2514/1.j057420
    [29]
    PAN C, XUE D, XU Y, et al. Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(10): 104704. doi: 10.1007/s11433-015-5719-y
    [30]
    陈启刚, 钟强. 体视粒子图像测速技术研究进展[J]. 水力发电学报, 2018, 37(8): 38–54.

    CHEN Q G, ZHONG Q. Advances in stereoscopic particle image velocimetry[J]. Journal of Hydroelectric Engineering, 2018, 37(8): 38–54.
    [31]
    FEI R, MERZKIRCH W. Investigations of the measurement accuracy of stereo particle image velocimetry[J]. Experi-ments in Fluids, 2004, 37(4): 559–565. doi: 10.1007/s00348-004-0843-x
    [32]
    陈钊, 郭永彩, 高潮. 三维PIV原理及其实现方法[J]. 实验流体力学, 2006, 20(4): 77–82, 105. doi: 10.3969/j.issn.1672-9897.2006.04.015

    CHEN Z, GUO Y C, GAO C. Principle and technology of three-dimensional PIV[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 77–82, 105. doi: 10.3969/j.issn.1672-9897.2006.04.015
    [33]
    WATANABE T, ZHANG X, NAGATA K. Direct numerical simulation of incompressible turbulent boundary layers and planar jets at high Reynolds numbers initialized with implicit large eddy simulation[J]. Computers & Fluids, 2019, 194: 104314. doi: 10.1016/j.compfluid.2019.104314
    [34]
    高南, 刘玄鹤. 实用化壁面切应力测量技术的综述与展望[J]. 空气动力学学报, 2023, 41(3): 1–24. doi: 10.7638/kqdlxxb-2021.0450

    GAO N, LIU X H. A review of wall-shear-stress measure-ment techniques for practical applictions[J]. Acta Aero-dynamica Sinica, 2023, 41(3): 1–24. doi: 10.7638/kqdlxxb-2021.0450
    [35]
    LIU X H, LI Z Y, GAO N. An improved wall shear stress measurement technique using sandwiched hot-film sensors[J]. Theoretical and Applied Mechanics Letters, 2018, 8(2): 137–141. doi: 10.1016/j.taml.2018.02.010
    [36]
    LIU X H, LI Z Y, WU C J, et al. Toward calibration-free wall shear stress measurement using a dual hot-film sensor and Kelvin bridges[J]. Measurement Science and Tech-nology, 2018, 29(10): 105303. doi: 10.1088/1361-6501/aadb1b
    [37]
    LIU X H, WANG H, WU C J, et al. On the calibration-free two-component wall-shear-stress measurement technique using dual-layer hot-films[J]. Review of Scientific Instru-ments, 2020, 91(8): 085004. doi: 10.1063/5.0006705
    [38]
    徐华舫. 空气动力学基础(上册)[M]. 修订版. 北京: 北京航空学院出版社, 1987.
    [39]
    王建杰, 易海明, 潘翀, 等. 粗糙壁湍流研究现状综述[J]. 空气动力学学报, 2017, 35(5): 611–619. doi: 10.7638/kqdlxxb-2017.0033

    WANG J J, YI H M, PAN C, et al. Progress in rough-wall turbulence[J]. Acta Aerodynamica Sinica, 2017, 35(5): 611–619. doi: 10.7638/kqdlxxb-2017.0033
    [40]
    ZHANG Q F, PAN C, WANG J J. De-asymmetry of small-scale motions in wall-bounded turbulence[J]. Physics of Fluids, 2022, 34(6): 065110. doi: 10.1063/5.0092548
    [41]
    DENG S C, PAN C, WANG J J, et al. On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number[J]. Journal of Fluid Mechanics, 2018, 844: 635–668. doi: 10.1017/jfm.2018.160
    [42]
    WANG L W, PAN C, WANG J J, et al. Statistical signatures of component wall-attached eddies in proper orthogonal decomposition modes of a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2022, 944: A26. doi: 10.1017/jfm.2022.495
    [43]
    BAI H L, GONG J L, LU Z B. Energetic structures in the turbulent boundary layer over a spanwise-heterogeneous converging/diverging riblets wall[J]. Physics of Fluids, 2021, 33(7): 075113. doi: 10.1063/5.0055767
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (203) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return