Volume 37 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
WANG X H, WU Y C, XU D Y, et al. Multi-wavelength synthetic aperture rainbow refractometer[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 34-40 doi: 10.11729/syltlx20230026
Citation: WANG X H, WU Y C, XU D Y, et al. Multi-wavelength synthetic aperture rainbow refractometer[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 34-40 doi: 10.11729/syltlx20230026

Multi-wavelength synthetic aperture rainbow refractometer

doi: 10.11729/syltlx20230026
  • Received Date: 2023-03-06
  • Accepted Date: 2023-07-18
  • Rev Recd Date: 2023-06-12
  • Available Online: 2023-08-31
  • Publish Date: 2023-10-30
  • Against the increasing requirement of large-scale conditions, there is more demand of the measurement instruments. As an efficient approach of measuring cloud droplets, the measurement distance of the rainbow refractometry is generally less than 50 cm owing to the limitation of the aperture of the imaging system. The synthetic aperture rainbow refractometry is proposed to achieve long distance droplet measurement. Laser beams of multiple wavelengths are used to irradiate droplets and multiple rainbow signals are generated. The multiple rainbow signals are collected and combined into one signal and then inversed to obtain the droplet parameters. In this way, the measurement distance of the rainbow refractometry is increased to around 1.5 m, which breaks the aperture limit of the rainbow refractometry and enlarges its applicability. Based on this technique, the multi-wavelength synthetic aperture rainbow refractometer is developed and suitable for parameter measurement of droplets in the central region of large-scale facilities with instruments located outside. The synthetic aperture rainbow refractometry is verified to achieve long distance droplet measurement. The feasibility and accuracy of the multi-wavelength synthetic aperture rainbow refractometer were proved through experimental tests of water and ethanol droplets with different sizes and refractive indices. The sizes of water and ethanol droplets were within the range from 100 to 200 μm. The droplet size and refractive index uncertainties were within 5 μm and 8 × 10−4, respectively. Therefore, the multi-wavelength synthetic aperture rainbow refractometer is no longer limited by the aperture size and can be applied to larger industrial scenarios, achieving the multi-parameters droplet measurement of size, refractive index, and so on.
  • loading
  • [1]
    战培国. 结冰云小水滴粒径测量设备综述[J]. 测控技术, 2020, 39(6): 1–7. doi: 10.19708/j.ckjs.2020.04.217

    ZHAN P G. Review of measuring instruments for water droplet sizing in icing clouds[J]. Measurement & Control Technology, 2020, 39(6): 1–7. doi: 10.19708/j.ckjs.2020.04.217
    [2]
    郭学良, 于子平, 杨泽后, 等. 高性能机载云粒子成像仪研制及应用[J]. 气象学报, 2020, 78(6): 1050–1064. doi: 10.11676/qxxb2017.049

    GUO X L, YU Z P, YANG Z H, et al. Development and application of the high-performance airborne cloud particle imager[J]. Acta Meteorologica Sinica, 2020, 78(6): 1050–1064. doi: 10.11676/qxxb2017.049
    [3]
    陈舒越, 郭向东, 王梓旭, 等. 结冰风洞过冷大水滴粒径测量初步研究[J]. 实验流体力学, 2021, 35(3): 22–29. doi: 10.11729/syltlx20200104

    CHEN S Y, GUO X D, WANG Z X, et al. Preliminary research on size measurement of supercooled large droplet in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 22–29. doi: 10.11729/syltlx20200104
    [4]
    LANCE S, BROCK C A, ROGERS D, et al. Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC[J]. Atmospheric Measurement Techniques, 2010, 3(6): 1683–1706. doi: 10.5194/amt-3-1683-2010
    [5]
    PORCHERON E, LEMAITRE P, VAN BEECK J, et al. Development of a spectrometer for airborne measurement of droplet sizes in clouds[J]. Journal of the European Optical Society: Rapid Publications, 2015, 10: 15030. doi: 10.2971/jeos.2015.15030
    [6]
    BEALS M J, FUGAL J P, SHAW R A, et al. Holographic measurements of inhomogeneous cloud mixing at the centimeter scale[J]. Science, 2015, 350(6256): 87–90. doi: 10.1126/science.aab0751
    [7]
    STRUK P M, KING M C, BARTKUS T P, et al. Ice crystal icing physics study using a NACA 0012 airfoil at the national research council of Canada’s research altitude test facility[C]//Proc of the 2018 Atmospheric and Space Environments Conference. 2018. doi: 10.2514/6.2018-4224
    [8]
    ROTH N, ANDERS K, FROHN A. Refractive-index measurements for the correction of particle sizing methods[J]. Applied Optics, 1991, 30(33): 4960–4965. doi: 10.1364/ao.30.004960
    [9]
    WU Y C, LI H P, WU X C, et al. Change of evaporation rate of single monocomponent droplet with temperature using time-resolved phase rainbow refractometry[J]. Proceed-ings of the Combustion Institute, 2019, 37(3): 3211–3218. doi: 10.1016/j.proci.2018.09.026
    [10]
    LI C, LV Q M, LI N, et al. Planar rainbow refractometry[J]. Optics Letters, 2021, 46(23): 5898–5901. doi: 10.1364/OL.444013
    [11]
    WU Y C, CRUA C, LI H P, et al. Simultaneous measurement of monocomponent droplet temperature/refractive index, size and evaporation rate with phase rainbow refractometry[J]. Journal of Quantitative Spectro-scopy and Radiative Transfer, 2018, 214: 146–157. doi: 10.1016/j.jqsrt.2018.04.034
    [12]
    VAN BEECK J P, RIETHMULLER M L. Nonintrusive measurements of temperature and size of single falling raindrops[J]. Applied Optics, 1995, 34(10): 1633–1639. doi: 10.1364/AO.34.001633
    [13]
    WU Y C, LI C, CAO J Z, et al. Mixing ratio measurement in multiple sprays with global rainbow refractometry[J]. Experimental Thermal and Fluid Science, 2018, 98: 309–316. doi: 10.1016/j.expthermflusci.2018.06.004
    [14]
    LV Q M, WU Y C, LI C, et al. Surface tension and viscosity measurement of oscillating droplet using rainbow refracto-metry[J]. Optics Letters, 2020, 45(24): 6687–6690. doi: 10.1364/OL.412498
    [15]
    曹建政, 李灿, 吴迎春, 等. 紧凑型彩虹折射仪的开发与实验测试[J]. 激光与光电子学进展, 2019, 56(10): 101201. doi: 10.3788/LOP56.101201

    CAO J Z, LI C, WU Y C, et al. Development and experimental test of compact rainbow refractometer[J]. Laser & Optoelectronics Progress, 2019, 56(10): 101201. doi: 10.3788/LOP56.101201
    [16]
    WU X C, LI C, CAO K L, et al. Instrumentation of rainbow refractometry: portable design and performance testing[J]. Laser Physics, 2018, 28(8): 085604. doi: 10.1088/1555-6611/aac361
    [17]
    WANG X H, WU Y C, XU D Y, et al. Synthetic aperture rainbow refractometry[J]. Optics Letters, 2022, 47(20): 5272–5275. doi: 10.1364/OL.471103
    [18]
    WU Y C, WANG X H, XU D Y, et al. Synthetic aperture rainbow refractometry for droplet refractive index and size measurement with long range: standard and global modes[J]. Powder Technology, 2022, 411: 117873. doi: 10.1016/j.powtec.2022.117873
    [19]
    NUSSENZVEIG H M. High-frequency scattering by a transparent sphere. II. theory of the rainbow and the glory[J]. Journal of Mathematical Physics, 1969, 10(1): 125–176. doi: 10.1063/1.1664747
    [20]
    KEDENBURG S, VIEWEG M, GISSIBL T, et al. Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region[J]. Optical Materials Express, 2012, 2(11): 1588–1611. doi: 10.1364/ome.2.001588
    [21]
    NUSSENZVEIG H M, MARSTON P L. Diffraction effects in semiclassical scattering[J]. The Journal of the Acoustical Society of America, 1993, 94(2): 1175. doi: 10.1121/1.406930
    [22]
    ROWE P M, FERGODA M, NESHYBA S. Temperature-dependent optical properties of liquid water from 240 to 298 K[J]. Journal of Geophysical Research:Atmospheres, 2020, 125(17): 032624. doi: 10.1029/2020jd032624
    [23]
    SANI E, DELL'ORO A. Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared[J]. Optical Materials, 2016, 60: 137–141. doi: 10.1016/j.optmat.2016.06.041
    [24]
    HALE G M, QUERRY M R. Optical constants of water in the 200 nm to 200 micrometer wavelength region[J]. Applied Optics, 1973, 12(3): 555–563. doi: 10.1364/ao.12.000555
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (129) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return