Volume 37 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
WU M W, XU M Y, MI J C. A review on the development of oscillating jets[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 1-17 doi: 10.11729/syltlx20230022
Citation: WU M W, XU M Y, MI J C. A review on the development of oscillating jets[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 1-17 doi: 10.11729/syltlx20230022

A review on the development of oscillating jets

doi: 10.11729/syltlx20230022
  • Received Date: 2023-03-02
  • Accepted Date: 2023-05-12
  • Rev Recd Date: 2023-04-28
  • Publish Date: 2023-08-30
  • The flow control method can effectively promote the mixing of the injected fluid with the surrounding fluid, and it has important applications in various fields, such as energy, chemical industry, aerospace and precision manufacturing, etc. Therefore, it has received widespread attention from scholars worldwide. In order to better understand the current situation and future development trend of oscillatory jets, this paper is the first to comprehensively summarize and classify the seven excitation methods of oscillatory jets, such as microjet, mechanical, feedback, blunt V-nozzle, impact V-plate, cavity self-excited flapping, film self-excited flapping, etc. A comparison of the principles of the different excitation methods and the characteristics of the resulting oscillating jets is conducted, pointing out the problems of the oscillating jet technology itself and the limitations of the industrial application of related technologies, and giving forecasts and suggestions for the development of the oscillating jet technology.

  • loading
  • [1]
    CERRETELLI C, KIRTLEY K. Boundary layer separation control with fluidic oscillators[J]. Journal of Turbomachinery, 2009, 131(4): 1. doi: 10.1115/1.3066242
    [2]
    史志伟, 张海涛. 合成射流控制翼型分离的流动显示与PIV测量[J]. 实验流体力学, 2008, 22(3): 49–53. doi: 10.3969/j.issn.1672-9897.2008.03.011

    SHI Z W, ZHANG H T. Flow visualization and PIV measurement of airfoil separated flow control based on synthetic jet[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(3): 49–53. doi: 10.3969/j.issn.1672-9897.2008.03.011
    [3]
    王冬, 俞刚. 煤油射流在超声速燃烧室中的实验研究[J]. 实验流体力学, 2005, 19(2): 11–13. doi: 10.3969/j.issn.1672-9897.2005.02.003

    WANG D, YU G. Investigation of kerosene jet spray in supersonic combustion[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2): 11–13. doi: 10.3969/j.issn.1672-9897.2005.02.003
    [4]
    VIDERGAR R, RAPSON D. Gyro-therm technology boosts cement kiln output, efficiency and cuts NOx emissions[J]. IEEE Cement Industry Technical Conference (Paper), 1997: 345-357.
    [5]
    CAMCI C, HERR F. Forced convection heat transfer enhancement using a self-oscillating impinging planar jet[J]. Journal of Heat Transfer, 2002, 124(4): 770–782. doi: 10.1115/1.1471521
    [6]
    HEWAKANDAMBY B N. A numerical study of heat transfer performance of oscillatory impinging jets[J]. International Journal of Heat and Mass Transfer, 2009, 52(1-2): 396–406. doi: 10.1016/j.ijheatmasstransfer.2008.07.004
    [7]
    LIN C K, HSIAO F B, SHEU S S. Flapping motion of a planar jet impinging on a V-shaped plate[J]. Journal of Aircraft, 1993, 30(3): 320–325. doi: 10.2514/3.46337
    [8]
    LEE G B, KUO T Y, WU W Y. A novel micromachined flow sensor using periodic flapping motion of a planar jet impinging on a V-shaped plate[J]. Experimental Thermal and Fluid Science, 2002, 26(5): 435–444. doi: 10.1016/S0894-1777(02)00155-3
    [9]
    YANG H F, HSU C M, HUANG R F. Flame behavior of bifurcated jets in a V-shaped bluff-body burner[J]. Journal of Marine Science and Technology, 2014, 22(5): 606–611. doi: 10.6119/JMST-013-1025-1
    [10]
    NATHAN G J, TURNS S R, BANDARU R V. The influence of fuel jet precession on the global properties and emissions of unconfined turbulent flames[J]. Combustion Science and Technology, 1996, 112(1): 211–230. doi: 10.1080/00102209608951958
    [11]
    NATHAN G. The enhanced mixing burner[D]. Adelaide: University of Adelaide, 1998.
    [12]
    VIETS H. Flip-flop jet nozzle[J]. AIAA Journal, 1975, 13(10): 1375–1379. doi: 10.2514/3.60550
    [13]
    SEO J H, ZHU C, MITTAL R. Flow physics and frequency scaling of sweeping jet fluidic oscillators[J]. AIAA Journal, 2018, 56(6): 2208–2219. doi: 10.2514/1J056563
    [14]
    RAMAN G, CORNELIUS D. Jet mixing control using excitation from miniature oscillating jets[J]. AIAA Journal, 1995, 33(2): 365–368. doi: 10.2514/3.12444
    [15]
    RAMAN G, RICE E J. Development of phased twin flip-flop jets[J]. Journal of Vibration and Acoustics, 1994, 116(3): 263–268. doi: 10.1115/1.2930423
    [16]
    MI J C, NATHAN G J, LUXTON R E. Mixing Characteristics of a flapping jet from a self-exciting nozzle[J]. Flow, Turbulence and Combustion, 2001, 67(1): 1–23. doi: 10.1023/A:1013544019463
    [17]
    XU M Y, WU M W, MI J C. A new type of self-excited flapping jets due to a flexible film at the nozzle exit[J]. Experimental Thermal and Fluid Science, 2019, 106: 226–233. doi: 10.1016/j.expthermflusci.2019.04.031
    [18]
    TOMAC M N. Novel impinging jets-based non-periodic sweeping jets[J]. Journal of Visualization, 2020, 23(3): 369–372. doi: 10.1007/s12650-020-00633-2
    [19]
    SCHNEIDER G M. Structures and turbulence characteristics in a precessing jet flow[D]. Adelaide: University of Adelaide, 1996.
    [20]
    SCHNEIDER G M, HOOPER J D, MUSGROVE A R, et al. Velocity and Reynolds stresses in a precessing jet flow[J]. Experiments in Fluids, 1997, 22(6): 489–495. doi: 10.1007/s003480050076
    [21]
    LUXTON R E, NATHAN G J. Mixing fluids: PCT/AU88/0014[P]. 1987-04.
    [22]
    ROCKWELL D, NAUDASCHER E. Review—self-sustaining oscillations of flow past cavities[J]. Journal of Fluids Engineering, 1978, 100(2): 152–165. doi: 10.1115/1.3448624
    [23]
    ROCKWELL D, NAUDASCHER E. Self-sustained oscillations of impinging free shear layers[J]. Annual Review of Fluid Mechanics, 1979, 11: 67–94. doi: 10.1146/annurev.fl.11.010179.000435
    [24]
    BILLANT P, CHOMAZ J M. Experimental evidence for a new instability of a vertical columnar vortex pair in a strongly stratified fluid[J]. Journal of Fluid Mechanics, 2000, 418: 167–188. doi: 10.1017/s0022112000001154
    [25]
    ZAMAN K B M Q. Flow field and near and far sound field of a subsonic jet[J]. Journal of Sound and Vibration, 1986, 106(1): 1–16. doi: 10.1016/S0022-460X(86)80170-5
    [26]
    JUNIPER M P. The effect of confinement on the stability of two-dimensional shear flows[J]. Journal of Fluid Mechanics, 2006, 565: 171. doi: 10.1017/s0022112006001558
    [27]
    EL-HAK M G. Flow control: passive, active, and reactive flow management[M]. Cambridge: Cambridge University Press, 2000.
    [28]
    CROW S C, CHAMPAGNE F H. Orderly structure in jet turbulence[J]. Journal of Fluid Mechanics, 1971, 48(3): 547–591. doi: 10.1017/s0022112071001745
    [29]
    SIMMONS J M, LAI J C S, PLATZER M F. Jet excitation by an oscillating vane[J]. AIAA Journal, 1981, 19(6): 673–676. doi: 10.2514/3.7810
    [30]
    FAVRE-MARINET M, BINDER G, HAC T V. Generation of oscillating jets[J]. Journal of Fluids Engineering, 1981, 103(4): 609–614. doi: 10.1115/1.3241780
    [31]
    DAVIS M R. Variable control of jet decay[J]. AIAA Journal, 1982, 20: 606–609. doi: 10.2514/3.7934
    [32]
    杨军. 正反馈式射流振荡器性能研究及应用[D]. 大连: 大连理工大学, 2008.

    YANG J. Study on performance of feedback jet-oscillator and application[D]. Dalian: Dalian University of Technology, 2008. doi: 10.7666/d.y1248203
    [33]
    NATHAN G J, LUXTON R E. The entrainment and combustion characteristics and an axisymmetric, self-exciting, enhanced mixing nozzle[J]. ASME/JSME Therm. Eng. Proc, 1991, 5: 145–151.
    [34]
    米建春, 李鹏飞. 低NOx自激振荡射流燃烧器[J]. 中国电机工程学报, 2010, 0309, 0080(008): 32–38.

    MI J C, LI P F. Low NOx self-excited oscillating-jet burners[J]. Proceedings of the CSEE, 2010, 0309, 0080(008): 32–38.
    [35]
    NATHAN G J, MI J C, ALWAHABI Z T, et al. Impacts of a jet’s exit flow pattern on mixing and combustion performance[J]. Progress in Energy and Combustion Science, 2006, 32(5-6): 496–538. doi: 10.1016/j.pecs.2006.07.002
    [36]
    HILL W G Jr, GREENE P R. Increased turbulent jet mixing rates obtained by self-excited acoustic oscillations[J]. Journal of Fluids Engineering, 1977, 99(3): 520–525. doi: 10.1115/1.3448833
    [37]
    HANDA T, FUJIMURA I. Fluidic oscillator actuated by a cavity at high frequencies[J]. Sensors and Actuators A: Physical, 2019, 300: 111676. doi: 10.1016/j.sna.2019.111676
    [38]
    WU M W, XU M Y, MI J C, et al. Mixing characteristics of a film-exciting flapping jet[J]. International Journal of Heat and Fluid Flow, 2020, 82: 108532. doi: 10.1016/j.ijheatfluidflow.2019.108532
    [39]
    KNOWLES K, SADDINGTON A J. A review of jet mixing enhancement for aircraft propulsion applications[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering, 2006, 220(2): 103–127. doi: 10.1243/09544100g01605
    [40]
    RAGHU S. Fluidic oscillators for flow control[J]. Experiments in Fluids, 2013, 54(2): 1455. doi: 10.1007/s00348-012-1455-5
    [41]
    GREGORY J, TOMAC M N. A review of fluidic oscillator development and application for flow control[C]//Proc of the 43rd Fluid Dynamics Conference. 2013: 2474. doi: 10.2514/6.2013-2474
    [42]
    SMITH N L. The role of fuel-rich clusters in flame stabilization and NOx emission reduction with precessing jet pulverized fuel flames[J]. Symposium (International) on Combustion, 1998, 27(2): 3173–3179. doi: 10.1016/S0082-0784(98)80180-X
    [43]
    SMITH N L. The significance of particle clustering in pulverized coal flames[J]. Proceedings of the Combustion Institute, 2002, 29(1): 797–804. doi: 10.1016/S1540-7489(02)80102-X
    [44]
    REYNOLDS W C, PAREKH D E, JUVET P J D, et al. Bifurcating and blooming jets[J]. Annual Review of Fluid Mechanics, 2003, 35: 295–315. doi: 10.1146/annurev.fluid.35.101101.161128
    [45]
    LEE M, REYNOLDS W C. Bifurcating and blooming jets[J]. Am. Phys. Soc, 1982, 27: 21–23.
    [46]
    LONGMIRE E K, DUONG L H. Bifurcating jets generated with stepped and sawtooth nozzles[J]. Physics of Fluids, 1996, 8: 978–992. doi: 10.1063/1.868876
    [47]
    LEE M. Bifurcating and Blooming Jets [D]. Stanford: Stanford University, 1985.
    [48]
    GLEZER A, AMITAY M. Synthetic jets[J]. Annual review of fluid mechanics, 2002, 34: 503–529. doi: 10.1146/annurev.fluid.34.090501.094913
    [49]
    SMITH B L, GLEZER A. The formation and evolution of synthetic jets[J]. Physics of Fluids, 1998, 10(9): 2281–2297. doi: 10.1063/1.869828
    [50]
    米建春, 拉塞尔·E.勒克斯顿, 格雷哈恩·J.内森. 振荡射流: CN1279756A[P]. 2001-01-10.
    [51]
    MI J C. Frequency characteristics of various oscillating jets[D]. Adelaide: University of Adelaide, 1996.
    [52]
    PERUMAL A K, WU Z, FAN D, et al. A hybrid artificial intelligence control of a turbulent jet: Reynolds number effect and scaling[J]. Journal of Fluid Mechanics, 2022, 942: A47. doi: 10.1017/jfm.2022.341
    [53]
    WU Z, WONG C W, ZHOU Y. Dual-input/single-output extremum-seeking system for jet control[J]. AIAA Journal, 2018, 56(4): 1463–1471. doi: 10.2514/1.J056675
    [54]
    FAN D W, WU Z, YANG H, et al. Modified extremum-seeking closed-loop system for jet mixing enhancement[J]. AIAA Journal, 2017, 55(11): 3891–3902. doi: 10.2514/1.J055644
    [55]
    YANG H, ZHOU Y, SO R M C, et al. Turbulent jet manipulation using two unsteady azimuthally separated radial minijets[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2191): 20160417. doi: 10.1098/rspa.2016.0417
    [56]
    罗振兵, 夏智勋, 方丁酉, 等. 合成射流影响因素[J]. 国防科技大学学报, 2002, 24(3): 32–35. doi: 10.3969/j.issn.1001-2486.2002.03.008

    LUO Z B, XIA Z X, FANG D Y, et al. The factors influencing the synthetic jet[J]. Journal of National University of Defense Technology, 2002, 24(3): 32–35. doi: 10.3969/j.issn.1001-2486.2002.03.008
    [57]
    罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D]. 长沙: 国防科学技术大学, 2006.

    LUO Z B. Mechanism of synthetic jet/synthetic double jet and its application in jet vector control and micropump[D]. Changsha: National University of Defense Technology, 2006.
    [58]
    WEN X, LI Z Y, ZHOU L L, et al. Flow dynamics of a fluidic oscillator with internal geometry variations[J]. Physics of Fluids, 2020, 32(7): 075111. doi: 10.1063/5.0012471
    [59]
    LI Z Y, LIU J J, ZHOU W W, et al. Experimental investigation of flow dynamics of sweeping jets impinging upon confined concave surfaces[J]. International Journal of Heat and Mass Transfer, 2019, 142: 118457. doi: 10.1016/j.ijheatmasstransfer.2019.118457
    [60]
    WEN X, LI Z Y, ZHOU W W, et al. Interaction of dual sweeping impinging jets at different Reynolds numbers[J]. Physics of Fluids, 2018, 30(10): 105105. doi: 10.1063/1.5054161
    [61]
    WEN X, LIU J J, KIM D, et al. Study on three-dimensional flow structures of a sweeping jet using time-resolved stereo particle image velocimetry[J]. Experimental Thermal and Fluid Science, 2020, 110: 109945. doi: 10.1016/j.expthermflusci.2019.109945
    [62]
    WOSZIDLO R, OSTERMANN F, SCHMIDT H J. Fundamental properties of fluidic oscillators for flow control applications[J]. AIAA Journal, 2019, 57(3): 978–992. doi: 10.2514/1.J056775
    [63]
    WU Z J, ZHAO W B, HU Z J, et al. Study on the spray characteristics and oscillation mechanism of a feedback-free internal impinging nozzle[J]. Flow, Turbulence and Combustion, 2021, 107(4): 979–1002. doi: 10.1007/s10494-021-00255-0
    [64]
    GUYOT D, PASCHEREIT C O, RAGHU S. Active combustion control using a fluidic oscillator for asymmetric fuel flow modulation[J]. International Journal of Flow Control, 2009, 1(2): 155–166. doi: 10.1260/175682509788913335
    [65]
    BOBUSCH B C, WOSZIDLO R, BERGADA J M, et al. Experimental study of the internal flow structures inside a fluidic oscillator[J]. Experiments in Fluids, 2013, 54(6): 1559. doi: 10.1007/s00348-013-1559-6
    [66]
    WOSZIDLO R, OSTERMANN F, NAYERI C N, et al. The time-resolved natural flow field of a fluidic oscillator[J]. Experiments in Fluids, 2015, 56(6): 125. doi: 10.1007/s00348-015-1993-8
    [67]
    HUANG R F, YANG H F, HSU C M. Flame behavior and thermal structure of combusting non-pulsating and pulsating plane jets[J]. Journal of Propulsion and Power, 2013, 29(1): 114–124.
    [68]
    ZELEKE D S, HUANG R F, HSU C M. Effects of Reynolds number on flow and mixing characteristics of a self-sustained swinging jet[J]. Journal of Turbulence, 2020, 21(8): 434–462. doi: 10.1080/14685248.2020.1817464
    [69]
    CATER J E, SORIA J. The evolution of round zero-net-mass-flux jets[J]. Journal of Fluid Mechanics, 2002, 472: 167–200. doi: 10.1017/s0022112002002264
    [70]
    BEN CHIEKH M, FERCHICHI M, BÉRA J C. Modified flapping jet for increased jet spreading using synthetic jets[J]. International Journal of Heat and Fluid Flow, 2011, 32(5): 865–875. doi: 10.1016/j.ijheatfluidflow.2011.06.004
    [71]
    BÉRA J C, MICHARD M, GROSJEAN N, et al. Flow analysis of two-dimensional pulsed jets by particle image velocimetry[J]. Experiments in Fluids, 2001, 31(5): 519–532. doi: 10.1007/s003480100314
    [72]
    LUO Z B, XIA Z X, XIE Y G. Jet vectoring control using a novel synthetic jet actuator[J]. Chinese Journal of Aeronautics, 2007, 20(3): 193–201. doi: 10.1016/S1000-9361(07)60032-6
    [73]
    TAMBURELLO D A, AMITAY M. Active control of a free jet using a synthetic jet[J]. International Journal of Heat and Fluid Flow, 2008, 29(4): 967–984. doi: 10.1016/j.ijheatfluidflow.2008.02.017
    [74]
    SMITH B L, GLEZER A. Jet vectoring using synthetic jets[J]. Journal of Fluid Mechanics, 2002, 458: 1–34. doi: 10.1017/s0022112001007406
    [75]
    MI J C, NATHAN G J. Statistical analysis of the velocity field in a mechanical precessing jet flow[J]. Physics of Fluids, 2005, 17(1): 015102. doi: 10.1063/1.1824138
    [76]
    SCHNEIDER G M, FROUD D, SYRED N, et al. Velocity measurements in a precessing jet flow using a three dimensional LDA system[J]. Experiments in Fluids, 1997, 23(2): 89–98. doi: 10.1007/s003480050089
    [77]
    NOBES D S. The generation of large-scale structures by jet precession[D]. Adelaide: University of Adelaide, 1997.
    [78]
    RAGHU S. Feedback-free fluidic oscillator and method: US 6253782B1[P]. 2001-07-03.
    [79]
    SPYROPOULOS C E. A sonic oscillator[C]//Proceedings of the Fluid Amplification Symposium. 1964.
    [80]
    STOUFFER R D, BOWER R. Fluidic flow meter with fiber optic sensor: US5827976[P]. 1998-10-27.
    [81]
    XIE W, HU Z, ZHAO W, et al. Experimental and numerical studies on spray characteristics of an internal oscillating nozzle[J]. Atomization and Sprays, 2019, 29(1):19-37.
    [82]
    SEELE R, TEWES P, WOSZIDLO R, et al. Discrete sweeping jets as tools for improving the performance of the V-22[J]. Journal of Aircraft, 2009, 46(6): 2098–2106. doi: 10.2514/1.43663
    [83]
    RAMAN G , HAILYE M , RICE E J. Flip-flop jet nozzle extended to supersonic flows [J]. AIAA Journal, 1993, 31(6): 1028-1035.
    [84]
    WOSZIDLO R, WYGNANSKI I. Parameters governing separation control with sweeping jet actuators[C]//Proc of the 29th AIAA Applied Aerodynamics Conference. 2011: 3172. doi: 10.2514/6.2011-3172
    [85]
    SEIFERT A, STALNOV O, SPERBER D, et al. Large trucks drag reduction using active flow control[C]//Proc of the 46th AIAA Aerospace Sciences Meeting and Exhibit. 2008: 743. doi: 10.2514/6.2008-743
    [86]
    WOSZIDLO R, STUMPER T, NAYERI C, et al. Experimental study on bluff body drag reduction with fluidic oscillators[C]//Proc of the 52nd Aerospace Sciences Meeting. 2014: 0403 doi: 10.2514/6.2014-0403
    [87]
    RAMAN G, RAGHU S. Miniature fluidic oscillators for flow and noise control - Transitioning from macro to micro fluidics[C]//Proc of the Fluids 2000 Conference and Exhibition. 2000: 2554. doi: 10.2514/6.2000-2554
    [88]
    RAMAN G, RAGHU S. Cavity resonance suppression using miniature fluidic oscillators[J]. AIAA Journal, 2004, 42(12): 2608–2612. doi: 10.2514/1.521
    [89]
    YANG H F, HSU C M, HUANG R F. Controlling Plane-Jet Flame by a Fluidic Oscillation Technique[J]. Journal of engineering for gas turbines and power: Transactions of the ASME, 2014, 136(4): 041501. doi: 10.1115/1.4025928
    [90]
    HOSSAIN M A, AGRICOLA L, AMERI A, et al. Effects of exit fan angle on the heat transfer performance of sweeping jet impingement[C]//Proc of the 2018 International Energy Conversion Engineering Conference. 2018: 4886. doi: 10.2514/6.2018-4886
    [91]
    OSTERMANN F, WOSZIDLO R, NAYERI C, et al. Experimental comparison between the flow field of two common fluidic oscillator designs[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015: 0781. doi: 10.2514/6.2015-0781
    [92]
    HUANG R F, CHANG K T. Evolution and turbulence properties of self-sustained transversely oscillating flow induced by fluidic oscillator[J]. Journal of Fluids Engineering, 2007, 129(8): 1038–1047. doi: 10.1115/1.2746905
    [93]
    HUANG R F, CHANG K T. Oscillation frequency in wake of a vee gutter[J]. Journal of Propulsion and Power, 2004, 20(5): 871–878. doi: 10.2514/1.9431
    [94]
    UZOL O, CAMCI C. Experimental and computational visualization and frequency measurements of the jet oscillation inside a fluidic oscillator[J]. Journal of Visualization, 2002, 5(3): 263–272. doi: 10.1007/BF03182334
    [95]
    PLATZER M F, SIMMONS J M, BREMHORST K. Entrainment characteristics of unsteady subsonic jets[J]. AIAA Journal, 1978, 16(3): 282–284. doi: 10.2514/3.7523
    [96]
    LEE S K, LANSPEARY P V, NATHAN G J, et al. Low kinetic-energy loss oscillating-triangular-jet nozzles[J]. Experimental Thermal and Fluid Science, 2003, 27(5): 553–561. doi: 10.1016/s0894-1777(02)00269-8
    [97]
    MI J C, NATHAN G J. Self-excited jet-precession Strouhal number and its influence on downstream mixing field[J]. Journal of Fluids and Structures, 2004, 19(6): 851–862. doi: 10.1016/j.jfluidstructs.2004.04.006
    [98]
    WU M W, LI C W, ZHU C Q, et al. On flapping jets induced by a fluttering film and from circular nozzles of smooth contraction, orifice plate and long pipe[J]. Experiments in Fluids, 2022, 63(5): 81. doi: 10.1007/s00348-022-03426-5
    [99]
    MI J C, NATHAN G J. Scalar mixing characteristics of a self-excited flip-flop jet nozzle[C]//Proc of 14th Australasian Fluid Mechanics Conference. 2001, 817–820.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)

    Article Metrics

    Article views (299) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return