Volume 37 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
CHEN W L, LIN L H, DENG Z, et al. Passive control on flow past a circular cylinder with bionic nylon wires[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 66-75 doi: 10.11729/syltlx20230019
Citation: CHEN W L, LIN L H, DENG Z, et al. Passive control on flow past a circular cylinder with bionic nylon wires[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 66-75 doi: 10.11729/syltlx20230019

Passive control on flow past a circular cylinder with bionic nylon wires

doi: 10.11729/syltlx20230019
  • Received Date: 2023-02-27
  • Accepted Date: 2023-07-06
  • Rev Recd Date: 2023-03-26
  • Available Online: 2023-07-31
  • Publish Date: 2023-08-30
  • We investigated the control effectiveness and mechanism of the control of the circular cylinder flow field using bionic nylon wires inspired by bird feathers by wind tunnel tests. In this experiment, at a Reynolds number of 2.67 × 104, the bionic nylon filament was arranged at the front station of the cylinder and the length ratio L/D between nylon wire length and cylinder diameter was used as the characteristic parameter. The surface pressure measurement system was used to obtain the pressure coefficients around the cylinder to analyze the aerodynamic forces acting on the cylinder. The two-dimensional flow field information of the cylinder was obtained by a high-speed Particle Image Velocimetry (PIV) measurement system, and the Proper Orthogonal Decomposition (POD) was used to obtain the instantaneous and time-averaged characteristics of the flow field. The results show that at L/D < 0.6, the control effectiveness of nylon wires is limited because the nylon-induced vortex structures cannot reach the wake field. At L/D > 1.0, the nylon wires can significantly reduce the turbulent kinetic energy and Reynolds stress of the cylindrical wake field and suppress the lift and drag coefficient distributions around the circular cylinder. And at high values, nylon wires can inhibit the interaction between shear layers and thus change the von Kármán vortex shedding pattern of the cylinder.
  • loading
  • [1]
    陈政清. 桥梁风工程[M]. 北京: 人民交通出版社, 2005.

    CHEN Z Q. Bridge wind engineering[M]. Beijing: China Communications Press, 2005.
    [2]
    刘庆宽, 孙一飞, 张磊杰, 等. 凹痕对斜拉桥斜拉索气动性能影响研究[J]. 工程力学, 2019, 36(S1): 272–277. doi: 10.6052/j.issn.1000-4750.2018.05.S053

    LIU Q K, SUN Y F, ZHANG L J, et al. Study on the influence of dent on aerodynamic performance of stay cables of cable-stayed bridge[J]. Engineering Mechanics, 2019, 36(S1): 272–277. doi: 10.6052/j.issn.1000-4750.2018.05.S053
    [3]
    董欣, 丁洁民, 邹云峰, 等. 倒角化处理对于矩形高层建筑风荷载特性的影响机理研究[J]. 工程力学, 2021, 38(6): 151–162, 208. doi: 10.6052/j.issn.1000-4750.2020.07.0451

    DONG X, DING J M, ZOU Y F, et al. Effect of rounded corners on wind load characteristics of rectangular tall buildings[J]. Engineering Mechanics, 2021, 38(6): 151–162, 208. doi: 10.6052/j.issn.1000-4750.2020.07.0451
    [4]
    CHOI H, JEON W P, KIM J. Control of flow over a bluff body[J]. Annual Review of Fluid Mechanics, 2008, 40: 113–139. doi: 10.1146/annurev.fluid.39.050905.110149
    [5]
    GAO D L, MENG H, HUANG Y W, et al. Active flow control of the dynamic wake behind a square cylinder using combined jets at the front and rear stagnation points[J]. Physics of Fluids, 2021, 33(4): 047101. doi: 10.1063/5.0043191
    [6]
    YU H Y, CHEN W L, XU Z H, et al. Wake stabilization behind a cylinder by secondary flow over the leeward surface[J]. Physics of Fluids, 2022, 34(5): 055110. doi: 10.1063/5.0090797
    [7]
    BEARMAN P, BRANKOVIĆ M. Experimental studies of passive control of vortex-induced vibration[J]. European Journal of Mechanics - B, 2004, 23(1): 9–15. doi: 10.1016/j.euromechflu.2003.06.002
    [8]
    ZHOU B, WANG X K, GUO W, et al. Control of flow past a dimpled circular cylinder[J]. Experimental Thermal and Fluid Science, 2015, 69: 19–26. doi: 10.1016/j.expthermflusci.2015.07.020
    [9]
    ZHOU X, WANG J J, HU Y. Experimental investigation on the flow around a circular cylinder with upstream splitter plate[J]. Journal of Visualization, 2019, 22(4): 683–695. doi: 10.1007/s12650-019-00560-x
    [10]
    GAO D L, HUANG Y W, CHEN W L, et al. Control of circular cylinder flow via bilateral splitter plates[J]. Physics of Fluids, 2019, 31(5): 057105. doi: 10.1063/1.5097309
    [11]
    GAO D L, CHEN W L, LI H, et al. Flow around a circular cylinder with slit[J]. Experimental Thermal and Fluid Science, 2017, 82: 287–301. doi: 10.1016/j.expthermflusci.2016.11.025
    [12]
    KO N W M, LEUNG Y C, CHEN J J J. Flow past V-groove circular cylinders[J]. AIAA Journal, 1987, 25(6): 806–811. doi: 10.2514/3.9704
    [13]
    LIM H C, LEE S J. Flow control of circular cylinders with longitudinal grooved surfaces[J]. AIAA Journal, 2002, 40(10): 2027–2036. doi: 10.2514/2.1535
    [14]
    HUANG S. VIV suppression of a two-degree-of-freedom circular cylinder and drag reduction of a fixed circular cylinder by the use of helical grooves[J]. Journal of Fluids and Structures, 2011, 27(7): 1124–1133. doi: 10.1016/j.jfluidstructs.2011.07.005
    [15]
    CHAUHAN M K, DUTTA S, MORE B S, et al. Experimental investigation of flow over a square cylinder with an attached splitter plate at intermediate Reynolds number[J]. Journal of Fluids and Structures, 2018, 76: 319–335. doi: 10.1016/j.jfluidstructs.2017.10.012
    [16]
    SAHU T R, FURQUAN M, JAISWAL Y, et al. Flow-induced vibration of a circular cylinder with rigid splitter plate[J]. Journal of Fluids and Structures, 2019, 89: 244–256. doi: 10.1016/j.jfluidstructs.2019.03.015
    [17]
    BOCANEGRA EVANS H, HAMED A M, GORUMLU S, et al. Engineered bio-inspired coating for passive flow control[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): 1210–1214. doi: 10.1073/pnas.1715567115
    [18]
    BRÜCKER C. Interaction of flexible surface hairs with near-wall turbulence[J]. Journal of Physics: Condensed Matter, 2011, 23(18): 184120. doi: 10.1088/0953-8984/23/18/184120
    [19]
    TALBOYS E, GEYER T F, BRÜCKER C. An aeroacoustic investigation into the effect of self-oscillating trailing edge flaplets[J]. Journal of Fluids and Structures, 2019, 91: 102598. doi: 10.1016/j.jfluidstructs.2019.02.014
    [20]
    KUNZE S, BRÜCKER C. Control of vortex shedding on a circular cylinder using self-adaptive hairy-flaps[J]. Comptes Rendus Mécanique, 2012, 340(1-2): 41–56. doi: 10.1016/j.crme.2011.11.009
    [21]
    GEYER T F, KAMPS L, SARRADJ E, et al. Vortex shedding and modal behavior of a circular cylinder equipped with flexible flaps[J]. Acta Acustica united with Acustica, 2019, 105(1): 210–219. doi: 10.3813/AAA.919301
    [22]
    KAMPS L, GEYER T F, SARRADJ E, et al. Vortex shedding noise of a cylinder with hairy flaps[J]. Journal of Sound and Vibration, 2017, 388: 69–84. doi: 10.1016/j.jsv.2016.10.039
    [23]
    DENG Z, CHEN W L, YANG Z F. The control mechanism of the soft trailing fringe on the flow characteristics over an airfoil[J]. Physics of Fluids, 2022, 34(9): 095112. doi: 10.1063/5.0106936
    [24]
    DENG J, MAO X R, XIE F F. Dynamics of two-dimensional flow around a circular cylinder with flexible filaments attached[J]. Physical Review E, 2019, 100(5): 053107. doi: 10.1103/physreve.100.053107
    [25]
    DENG J, XU J J, YE Q Q. Experimental investigation of flow around a circular cylinder with attached membranes[J]. Journal of Fluids and Structures, 2022, 113: 103628. doi: 10.1016/j.jfluidstructs.2022.103628
    [26]
    KOEHL M A R. How do benthic organisms withstand moving water?[J]. American Zoologist, 1984, 24(1): 57–70. doi: 10.1093/icb/24.1.57
    [27]
    BECHERT D W, BRUSE M, HAGE W, et al. Fluid mechanics of biological surfaces and their technological application[J]. Naturwissenschaften, 2000, 87(4): 157–171. doi: 10.1007/s001140050696
    [28]
    DE LANGRE E. Effects of wind on plants[J]. Annual Review of Fluid Mechanics, 2008, 40: 141–168. doi: 10.1146/annurev.fluid.40.111406.102135
    [29]
    IRWIN H P A H, COOPER K R, GIRARD R. Correction of distortion effects caused by tubing systems in measurements of fluctuating pressures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1979, 5(1-2): 93–107. doi: 10.1016/0167-6105(79)90026-6
    [30]
    CHEN W L, LI H, HU H. An experimental study on a suction flow control method to reduce the unsteadiness of the wind loads acting on a circular cylinder[J]. Experiments in Fluids, 2014, 55(4): 1707. doi: 10.1007/s00348-014-1707-7
    [31]
    PARK J, DERRANDJI-AOUAT A, WU B, et al. Uncertainty analysis: Particle imaging velocimetry[C]// ITTC Recommended Procedures and Guidelines, Interna-tional Towing Tank Conference. 2008.
    [32]
    SIROVICH L. Turbulence and the dynamics of coherent structures. I. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561–571. doi: 10.1090/qam/910462
    [33]
    DERI E, BRAZA M, CID E, et al. Investigation of the three-dimensional turbulent near-wake structure past a flat plate by tomographic PIV at high Reynolds number[J]. Journal of Fluids and Structures, 2014, 47: 21–30. doi: 10.1016/j.jfluidstructs.2012.11.005
    [34]
    PROTHIN S, DJERIDI H, BILLARD J Y. Coherent and turbulent process analysis of the effects of a longitudinal vortex on boundary layer detachment on a NACA0015 foil[J]. Journal of Fluids and Structures, 2014, 47: 2–20. doi: 10.1016/j.jfluidstructs.2013.08.014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (219) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return