Volume 37 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
LI J, YANG D, LI M, et al. Progress in complex combustion field diagnostics based on on-line mass spectrometry technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 18-33 doi: 10.11729/syltlx20220145
Citation: LI J, YANG D, LI M, et al. Progress in complex combustion field diagnostics based on on-line mass spectrometry technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 18-33 doi: 10.11729/syltlx20220145

Progress in complex combustion field diagnostics based on on-line mass spectrometry technology

doi: 10.11729/syltlx20220145
  • Received Date: 2022-12-25
  • Accepted Date: 2023-02-13
  • Rev Recd Date: 2023-02-10
  • Publish Date: 2023-10-30
  • The combustion field is usually a complex system of gas-solid-liquid triphase coupling, and the results obtained from combustion diagnostic can support the researches to improve combustion efficiency and reduce pollutant emissions. In order to make the measurement results more accurate, it is urgent to develop advanced detection methods and detection systems. After several years of development, on-line mass spectrometry has the advantages of high sensitivity, fast analysis speed and wide detection range. It can be used for combustion flow field diagnostics under severe conditions such as high temperature and pressure, and can obtain more comprehensive and sensitive diagnostic information. Firstly, this paper summarized the development of key technologies, e.g., analyzer, ionization source, and sampling systems for on-line mass spectrometry in recent years. Secondly, the applications of on-line mass spectrometry on the measurement of flame component concentration and flame temperature in combustion field were enumerated. On this basis, the challenges and development prospects of the on-line mass spectrometry in complex combustion field diagnostics were summarized, which could provide reference for the relevant researchers.
  • loading
  • [1]
    刘兵, 董丰硕, 刘瑞东, 等. 真空紫外光电离质谱技术进展及其在快速分析中的应用[J]. 分析测试学报, 2021, 40(2): 208–214. doi: 10.3969/j.issn.1004-4957.2021.02.006

    LIU B, DONG F S, LIU R D, et al. Progress of vacuum ultraviolet photon ionization mass spectrometry and its application in on-line analysis[J]. Journal of Instrumental Analysis, 2021, 40(2): 208–214. doi: 10.3969/j.issn.1004-4957.2021.02.006
    [2]
    DANG M, LIU R D, DONG F S, et al. Vacuum ultraviolet photoionization on-line mass spectrometry: instrumentation developments and applications[J]. Trac-Trends in Analytical Chemistry, 2022, 149: 116542. doi: 10.1016/j.trac.2022.116542
    [3]
    DONG F S, LI H, LIU B, et al. Protonated acetone ion chemical ionization time-of-flight mass spectrometry for real-time measurement of atmospheric ammonia[J]. Journal of Environmental Sciences, 2022, 114: 66–74. doi: 10.1016/j.jes.2021.07.023
    [4]
    ZHU S N, YAN C, ZHENG J, et al. Observation and source apportionment of atmospheric alkaline gases in urban Beijing[J]. Environmental Science & Technology, 2022, 56(24): 17545–17555. doi: 10.1021/acs.est.2c03584.
    [5]
    COOL T A, MCILROY A, QI F, et al. Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source[J]. Review of Scientific Instruments, 2005, 76(9): 094102. doi: 10.1063/1.2010307
    [6]
    LI Y, ZHANG L, TIAN Z, et al. Experimental study of a fuel-rich premixed toluene flame at low pressure[J]. Energy & Fuels, 2009, 23(3): 1473–1485. doi: 10.1021/ef800902t
    [7]
    WANG S, WANG W M, LI H, et al. Rapid on-site detection of illegal drugs in complex matrix by thermal desorption acetone-assisted photoionization miniature ion trap mass spectrometer[J]. Analytical Chemistry, 2019, 91(6): 3845–3851. doi: 10.1021/acs.analchem.8b04168
    [8]
    CHEN W D, HOU K Y, HUA L, et al. Dopant-assisted reactive low temperature plasma probe for sensitive and specific detection of explosives[J]. Analyst, 2015, 140(17): 6025–6030. doi: 10.1039/c5an00816f
    [9]
    LIU B, TANG W X, LI H, et al. Point-of-care detection of sevoflurane anesthetics in exhaled breath using a miniature TOFMS for diagnosis of postoperative agitation symptoms in children[J]. Analyst, 2022, 147(11): 2484–2493. doi: 10.1039/d2an00479h
    [10]
    PRIETO M C, KOVTOUN V V, COTTER R J. Miniaturized linear time-of-flight mass spectrometer with pulsed extraction[J]. Journal of Mass Spectrometry, 2002, 37(11): 1158–1162. doi: 10.1002/jms.386
    [11]
    周丽娟. 小型飞行时间质谱的开发及射频增强化学电离源的研制[D]. 长春: 吉林大学, 2018.

    ZHOU L J. Development of miniature flight time mass spectrometry and radiofrequency field enhanced chemical ionization[D]. Changchun: Jilin University, 2018.
    [12]
    齐雅晨. 用于飞行时间质谱的膜进样及射频放电电离源的研究与应用[D]. 长春: 吉林大学, 2016.

    QI Y C. Development and application of membrane inlet time-of-flight mass spectrometry and radio frequency discharge ion source[D]. Changchun: Jilin University, 2016.
    [13]
    李金旭. 便携式飞行时间质谱的研究及其在挥发性硫化物测量中的应用[D]. 长春: 吉林大学, 2015.

    LI J X. Development of a portable time-of-flight mass spectrometry and its application in the measurement of volatile sulfide[D]. Changchun: Jilin University, 2015.
    [14]
    韩笑笑. 便携式TOFMS中VOCs快速富集冷阱研制及其应用研究[D]. 西安: 西安石油大学, 2018.

    H X X. Development and application of VOCs rapid enrichment cold trap in portable TOFMS[D]. Xi’an: Xi’an Shiyou University, 2018.
    [15]
    李庆运. 光电离飞行时间质谱仪研制及其用于催化过程监测[D]. 长春: 吉林大学, 2016.

    LI Q Y. Development of photoionization time-of-flight mass spectrometer and its application for catalytic reaction monitoring[D]. Changchun: Jilin University, 2016.
    [16]
    GROSS J H. Mass Spectrometry[M]. Berlin: Springer Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-10711-5.
    [17]
    黄灿. 核心机理中C4组分的燃烧反应动力学机理研究[D]. 北京: 清华大学, 2019.

    HUANG C. Combustion kinetics of the C4 foundational fuel chemistry[D]. Beijing: Tsinghua University, 2019.
    [18]
    黄燕. 氮气掺混的乙烯层流同轴扩散火焰温度场与组分浓度场测量[D]. 上海: 上海交通大学, 2018.

    HUANG Y. Two dimensional temperature and carbon dioxide concentration profiles of nitrogen added ethylene co-flow diffusion flames measured by mid-infrared direct absorption spectroscopy[D]. Shanghai: Shanghai Jiao Tong University, 2018.
    [19]
    洪延姬, 宋俊玲, 饶伟, 等. 激光吸收光谱断层诊断技术测量燃烧流场研究进展[J]. 实验流体力学, 2018, 32(1): 43–54. doi: 10.11729/syltlx20160177

    HONG Y J, SONG J L, RAO W, et al. Progress on tunable diode laser absorption tomography technique for combustion diagnotics[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 43–54. doi: 10.11729/syltlx20160177
    [20]
    洪延姬. 燃烧场吸收光谱诊断技术研究进展[J]. 实验流体力学, 2014, 28(3): 12–25. doi: 10.11729/syltlx2014ty02

    HONG Y J. Progress in absorption spectroscopy diagnosis techniques for combustion flowfields[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3): 12–25. doi: 10.11729/syltlx2014ty02
    [21]
    娄春, 张鲁栋, 蒲旸, 等. 基于自发辐射分析的被动式燃烧诊断技术研究进展[J]. 实验流体力学, 2021, 35(1): 1–17. doi: 10.11729/syltlx20200063

    LOU C, ZHANG L D, PU Y, et al. Research advances in passive techniques for combustion diagnostics based on analysis of spontaneous emission radiation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 1–17. doi: 10.11729/syltlx20200063
    [22]
    张大源, 李博, 高强, 等. 飞秒激光光谱技术在燃烧领域的应用[J]. 实验流体力学, 2018, 32(1): 1–10. doi: 10.11729/syltlx20170141

    ZHANG D Y, LI B, GAO Q, et al. Application of femtosecond-laser spectrum technology in combustion field[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 1–10. doi: 10.11729/syltlx20170141
    [23]
    刘训臣, 李玉阳, 周忠岳, 等. 光谱法和取样分析法在燃烧诊断研究中的应用[J]. 实验流体力学, 2016, 30(1): 43–54, 67. doi: 10.11729/syltlx20150138

    LIU X C, LI Y Y, ZHOU Z Y, et al. Applications of laser spectroscopy and mass spectrometry in combustion diagnostics[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 43–54, 67. doi: 10.11729/syltlx20150138
    [24]
    胡志云, 叶景峰, 张振荣, 等. 航空发动机地面试验激光燃烧诊断技术研究进展[J]. 实验流体力学, 2018, 32(1): 33–42. doi: 10.11729/syltlx20170135

    HU Z Y, YE J F, ZHANG Z R, et al. Development of laser combustion diagnostic techniques for ground aero-engine testing[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 33–42. doi: 10.11729/syltlx20170135
    [25]
    赵龙. 柴油类燃料若干典型分子结构的燃烧反应动力学研究[D]. 合肥: 中国科学技术大学, 2016.

    ZHAO L. Kinetic studies on several typical molecular structures of diesel and biodiesel fuels[D]. Heifei: University of Science and Technology of China, 2016.
    [26]
    卫立夏. 几种C3含氧化合物的真空紫外光电离及燃烧研究[D]. 合肥: 中国科学技术大学, 2006.

    WEI L X. Studies on VUV photoionization and combustion of some C3 oxygen-contained compounds[D]. Heifei: University of Science and Technology of China, 2006.
    [27]
    赵高升. 新型常压复合等离子体电离源-小型离子阱质谱仪的研发与应用[D]. 杭州: 浙江大学, 2022.

    ZHAO G S. Development and application of a noval atmospheric composite plasma ion source-miniature ion trap mass spectrometer[D]. Hangzhou: Zhejiang University, 2022.
    [28]
    刘兵. 便携式飞行时间质谱在现场快速分析中的应用[D]. 青岛: 山东大学, 2022.

    LIU B. Application of miniature time-of-flight mass spectrometer in on-line analysis[D]. Qingdao: Shandong University, 2022.
    [29]
    董丰硕. 化学电离飞行时间质谱实时检测氨气和有机胺的研究与应用[D]. 青岛: 山东大学, 2022.

    DONG F S. Development and applications of chemical ionization time-of-flight spectrometry for real-time detection of ammonia and organic amines[D]. Qingdao: Shandong University, 2022.
    [30]
    温作赢. 真空紫外光电离飞行时间质谱仪研制及其大气化学应用[D]. 合肥: 中国科学技术大学, 2020.

    WEN Z Y. Development of VUV photoionization time of flight mass spectrometer and its applications in atmospheric chemistry[D]. Heifei: University of Science and Technology of China, 2020.
    [31]
    李庆运. 飞行时间质谱光电离源的研制及其应用[D]. 长春: 吉林大学, 2019.

    LI Q Y. The development of photoionization sources for time-of-flight mass spectrometry and its application[D]. Changchun: Jilin University, 2019.
    [32]
    方向, 覃莉莉, 白岗. 四极杆质量分析器的研究现状及进展[J]. 质谱学报, 2005(4): 234–242.

    FANG X, Q L L, BAI G. An introduction to quadrupole mass filter[J]. Journal of Chinese Mass Spectrometry Society, 2005(4): 234–242.
    [33]
    BRUNNÉE C. The ideal mass analyzer: fact or fiction?[J]. International Journal of Mass Spectrometry and Ion Processes, 1987, 76(2): 125–237. doi: 10.1016/0168-1176(87)80030-7
    [34]
    SNYDER D T, PULLIAM C J, OUYANG Z, et al. Miniature and fieldable mass spectrometers: recent advances[J]. Analytical Chemistry, 2016, 88(1): 2–29. doi: 10.1021/acs.analchem.5b03070
    [35]
    ZUBAREV R A, MAKAROV A. Orbitrap mass spectrometry[J]. Analytical Chemistry, 2013, 85(11): 5288–5296. doi: 10.1021/ac4001223
    [36]
    SECCOMBE D P, REDDISH T J. Theoretical study of space focusing in linear time-of-flight mass spectrometers[J]. Review of Scientific Instruments, 2001, 72(2): 1330–1338. doi: 10.1063/1.1336824
    [37]
    SARUGAKU S, ARAKAWA M, TERASAKI A. Space focusing extensively spread ions in time-of-flight mass spectrometry by nonlinear ion acceleration[J]. International Journal of Mass Spectrometry, 2017, 414: 65–69. doi: 10.1016/j.ijms.2017.01.003
    [38]
    WANG T, CHU C, HUNG H, et al. Design parameters of dual-stage ion reflectrons[J]. Review of Scientific Instruments, 1994, 65(5): 1585–1589. doi: 10.1063/1.1144896
    [39]
    MAMYRIN B A, KARATAEV V I, SHMIKK D V, et al. The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution[J]. Journal of Experimental and Theoretical Physics, 1973, 37(1): 45.
    [40]
    SUGIYAMA E, HARA A, UEMURA K. A quantitative analysis of serum sulfatide by matrix-assisted laser desorption ionization time-of-flight mass spectrometry with delayed ion extraction[J]. Analytical Biochemistry, 1999, 274(1): 90–97. doi: 10.1006/abio.1999.4245
    [41]
    WANG B H, HOPKINS C E, BELENKY A B, et al. Sequencing of modified oligonucleotides using in-source fragmentation and delayed pulsed ion extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Processes, 1997, 169-170: 331–350. doi: 10.1016/S0168-1176(97)00232-2
    [42]
    MOWAT I A, DONOVAN R J, MAIER R R J. Enhanced cationization of polymers using delayed ion extraction with matrix-assisted laser desorption/ionization[J]. Rapid Communications in Mass Spectrometry, 1997, 11(1): 89–98. doi:10.1002/(SICI)1097-0231(19970115)11:1<89::AID-RCM810>3.0.CO;2-G
    [43]
    GUILHAUS M, SELBY D, MLYNSKI V. Orthogonal acceleration time-of-flight mass spectrometry[J]. Mass Spectrometry Reviews, 2000, 19(2): 65–107. doi:10.1002/(SICI)1098-2787(2000)19:2<65::AID-MAS1>3.0.CO;2-E
    [44]
    YILDIRIM M, SISE O, DOGAN M, et al. Designing multi-field linear time-of-flight mass spectrometers with higher-order space focusing[J]. International Journal of Mass Spectrometry, 2010, 291(1): 1–12. doi: 10.1016/j.ijms.2009.12.014
    [45]
    TIAN Y L, WANG Y S, WANG J Y, et al. Designing a multi-reflection time-of-flight mass analyzer for LPT[J]. International Journal of Mass Spectrometry, 2016, 408: 28–32. doi: 10.1016/j.ijms.2016.08.013
    [46]
    WILEY W C, Mclaren I H. Time-of-flight mass spectrometer with improved resolution[J]. Review of Scientific Instruments, 1955, 26(12): 1150–1157. doi: 10.1063/1.1715212
    [47]
    DODONOV A F, KOZLOVSKI V I, SOULIMENKOV I V, et al. High-resolution electrospray ionization orthogonal-injection time-of-flight mass spectrometer[J]. European Journal of Mass Spectrometry, 2000, 6(6): 481–490. doi: 10.1255/ejms.378
    [48]
    TOYODA M, ISHIHARA M, YAMAGUCHI S, et al. Construction of a new multi-turn time-of-flight mass spectrometer[J]. Journal of Mass Spectrometry, 2000, 35(2): 163–167. doi:10.1002/(SICI)1096-9888(200002)35:2<163::AID-JMS924>3.0.CO;2-G
    [49]
    TOYODA M, OKUMURA D, ISHIHARA M, et al. Multi-turn time-of-flight mass spectrometers with electrostatic sectors[J]. Journal of Mass Spectrometry, 2003, 38(11): 1125–1142. doi: 10.1002/jms.546
    [50]
    SATOH T, TSUNO H, IWANAGA M, et al. The design and characteristic features of a new time-of-flight mass spectrometer with a spiral ion trajectory[J]. Journal of the American Society for Mass Spectrometry, 2005, 16(12): 1969–1975. doi: 10.1016/j.jasms.2005.08.005
    [51]
    SATOH T, TSUNO H, IWANAGA M, et al. A new spiral time-of-flight mass spectrometer for high mass analysis[J]. Journal of the Mass Spectrometry Society of Japan, 2006, 54(1): 11–17. doi: 10.5702/massspec.54.11
    [52]
    WOLLNIK H, CASARES A. An energy-isochronous multi-pass time-of-flight mass spectrometer consisting of two coaxial electrostatic mirrors[J]. International Journal of Mass Spectrometry, 2003, 227(2): 217–222. doi: 10.1016/S1387-3806(03)00127-1
    [53]
    DICKEL T, PLASS W R, BECKER A, et al. A high-performance multiple-reflection time-of-flight mass spectrometer and isobar separator for the research with exotic nuclei[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 777: 172–188. doi: 10.1016/j.nima.2014.12.094
    [54]
    VERENTCHIKOV A N, YAVOR M I, HASIN Y I, et al. Multireflection planar time-of-flight mass analyzer. I: an analyzer for a parallel tandem spectrometer[J]. Technical Physics, 2005, 50(1): 73–81. doi: 10.1134/1.1854827
    [55]
    李函蔚. 质谱光电离/光致化学电离源研究及 VOCs 在线检测应用[D]. 长春: 吉林大学, 2023.

    LI H W. The Development of Mass Spectrometry Photoionization/Photochemical Ionization Sources and Its Applications for Online VOCs Analysis [D]. Changchun: Jilin University, 2023.
    [56]
    NIER A O. Some reflections on the early days of mass spectrometry at the university of minnesota[J]. International Journal of Mass Spectrometry and Ion Processes, 1990, 100: 1–13. doi: 10.1016/0168-1176(90)85063-8
    [57]
    STEIN S E, HELLER D N. On the risk of false positive identification using multiple ion monitoring in qualitative mass spectrometry: large-scale intercomparisons with a comprehensive mass spectral library[J]. Journal of The American Society for Mass Spectrometry, 2006, 17(6): 823–835. doi: 10.1016/j.jasms.2006.02.021
    [58]
    STEIN S E, PIERRE A, LIAS S G. Comparative evaluations of mass spectral databases[J]. Journal of the American Society for Mass Spectrometry, 1991, 2(5): 441–443. doi: 10.1016/1044-0305(91)85012-U
    [59]
    MÜHLBERGER F, ZIMMERMANN R, KETTRUP A. A mobile mass spectrometer for comprehensive on-line analysis of trace and bulk components of complex gas mixtures: parallel application of the laser-based ionization methods VUV single-photon ionization, resonant multiphoton ionization, and laser-induced electron impact ionization[J]. Analytical Chemistry, 2001, 73(15): 3590–3604. doi: 10.1021/ac010023b
    [60]
    SHI Y J, LIPSON R H. An overview of organic molecule soft ionization using vacuum ultraviolet laser radiation[J]. Canadian Journal of Chemistry, 2005, 83(11): 1891–1902. doi: 10.1139/v05-193
    [61]
    MÜHLBERGER F, WIESER J, ULRICH A, et al. Single photon ionization (SPI) via incoherent VUV-excimer light: robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis[J]. Analytical Chemistry, 2002, 74(15): 3790–3801. doi: 10.1021/ac0200825
    [62]
    温作赢, 顾学军, 林晓晓, 等. 真空紫外光电离质谱及其在大气化学中的应用研究[J]. 质谱学报, 2023, 44(2): 181–196. doi: 10.7538/zpxb.2022.0189

    WEN Z Y, GU X J, LIN X X, et al. acuum ultraviolet photoionization mass spectrometry and its wide applications in atmospheric chemistry[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(2): 181–196. doi: 10.7538/zpxb.2022.0189
    [63]
    YAP Y K, INAGAKI M, NAKAJIMA S, et al. High-power fourth-and fifth-harmonic generation of a Nd: YAG laser by means of a CsLiB6O10[J]. Optics Letters, 1996, 21(17): 1348–1350. doi: 10.1364/OL.21.001348
    [64]
    李奇峰, 汪华, 石勇, 等. 双光子共振四波差频产生的真空紫外激光特性研究[J]. 化学物理学报, 2004(3): 333–338.

    LI Q F, WANG H, SHI Y, et al. Characteristic study on VUV generated by two-photon resonant four wave mxing in xenon[J]. Chinese Journal of Chemical Physics, 2004(3): 333–338.
    [65]
    GEHM C, STREIBEL T, EHLERT S, et al. Development and optimization of an external-membrane introduction photoionization mass spectrometer for the fast analysis of (polycyclic) aromatic compounds in environmental and process waters[J]. Analytical Chemistry, 2019, 91(24): 15547–15554. doi: 10.1021/acs.analchem.9b03480
    [66]
    贾良元, 周忠岳, 李玉阳, 等. 基于同步辐射光电离质谱的燃烧与能源研究新方法[J]. 中国科学: 化学, 2013, 43(12): 1686–1699. doi: 10.1360/032013-246
    [67]
    潘洋, 张泰昌, 齐飞. 同步辐射单光子电离技术在燃烧和其他研究中的应用[C]//长三角光子科技创新论坛暨2006年安徽博士科技论坛论文集. 2006: 554-558.
    [68]
    齐飞. 同步辐射真空紫外单光子电离技术及其应用[J]. 中国科学技术大学学报, 2007(Z1): 414–425.

    QI F. Synchrotron radiation VUV single-photon ionization technique and its applications[J]. Journal of University of Science and Technology of China, 2007(Z1): 414–425.
    [69]
    北京同步辐射装置介绍[J]. 现代物理知识, 2008(2): 41.
    [70]
    吴旭, 田顺强, 张文志. 上海同步辐射光源工作点稳定性研究[J]. 原子能科学技术, 2022, 56(9): 1815–1820. doi: 10.7538/yzk.2022.youxian.0349

    WU X, TIAN S Q, ZHANG W Z. Study on tune stability of Shanghai synchrotron radiation facility[J]. Atomic Energy Science and Technology, 2022, 56(9): 1815–1820. doi: 10.7538/yzk.2022.youxian.0349
    [71]
    张国斌, 胡胜生, 封东来. 合肥光源[J]. 现代物理知识, 2020, 32(03): 3–9. doi: 10.13405/j.cnki.xdwz2020.03.002
    [72]
    周忠岳, 杨玖重, 潘洋, 等. 同步辐射真空紫外光电离质谱在燃烧和催化研究中的应用进展[J]. 质谱学报, 2021, 42(5): 598–608. doi: 10.7538/zpxb.2021.0149

    ZHOU Z Y, YANG J Z, PAN Y, et al. Recent applications of synchrotron vacuum ultraviolet photoionization mass spectrometry in combustion and catalysis research[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 598–608. doi: 10.7538/zpxb.2021.0149
    [73]
    NORMILE D. Unique free electron laser laboratory opens in China[J]. Science, 2017, 355(6322): 235–235. doi: 10.1126/science.355.6322.235
    [74]
    余永, 李钦明, 杨家岳, 等. 大连极紫外相干光源[J]. 中国激光, 2019, 46(1): 43–50. doi: 10.3788/CJL201946.0100005

    YU Y, LI Q M, YANG J Y, et al. Dalian extreme ultraviolet coherent light source[J]. Chinese Journal of Lasers, 2019, 46(1): 43–50. doi: 10.3788/CJL201946.0100005
    [75]
    LI C, WEI S, DU X, et al. On-line spectral diagnostic system for Dalian Coherent Light Source[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 783: 65–67. doi: 10.1016/j.nima.2015.01.089
    [76]
    谭国斌, 高伟, 黄正旭, 等. 真空紫外灯单光子电离源飞行时间质谱仪的研制[J]. 分析化学, 2011, 39(10): 1470–1475. doi: 10.3724/SP.J.1096.2011.01470
    [77]
    王健, 胡永华, 田振峰, 等. 真空紫外灯电离源飞行时间质谱仪的研制及应用[J]. 分析试验室, 2016, 35(10): 1236–1240. doi: 10.13595/j.cnki.issn1000-0720.2016.0279
    [78]
    赵振堂, 戴志敏, 张文志, 等. 上海粒子加速器大科学装置概述[J]. 复旦学报(自然科学版), 2023, 62(03): 293–309.
    [79]
    李庆运, 花磊, 蒋吉春, 等. 用于催化过程在线监测的高分辨光电离飞行时间质谱仪的研制和应用[J]. 分析化学, 2015, 43(10): 1531–1537. doi: 10.11895/j.issn.0253-3820.150454
    [80]
    陈文东, 侯可勇, 陈平, 等. 单光子/光电子在线质谱实时分析聚氯乙烯热分解/燃烧产物[J]. 环境科学, 2013, 34(1): 34–38. doi: 10.13227/j.hjkx.2013.01.018

    CHEN W D, HOU K Y, CHEN P, et al. Real-time analysis of polyvinyl chloride thermal decomposition/combustion products with single photon ionization/photoelectron ionization online mass spectrometer[J]. Environmental Science, 2013, 34(1): 34–38. doi: 10.13227/j.hjkx.2013.01.018
    [81]
    谢园园, 花磊, 侯可勇, 等. 单光子电离质谱法在线分析牙膏中的香精物质[J]. 分析化学, 2012, 40(12): 1883–1889. doi: 10.3724/SP.J.1096.2012.20542
    [82]
    谢园园, 花磊, 陈平, 等. 气相色谱-单光子电离飞行时间质谱的联用及在柴油组分表征中的应用[J]. 色谱, 2015, 33(2): 188–194. doi: 10.3724/SP.J.1123.2014.10028

    XIE Y Y, HUA L, CHEN P, et al. Coupling of gas chromatography with single photon ionization time-of-flight mass spectrometry and its application to characterization of compounds in diesel[J]. Chinese Journal of Chromatography, 2015, 33(2): 188–194. doi: 10.3724/SP.J.1123.2014.10028
    [83]
    WU Q, HUA L, HOU K, et al. Vacuum ultraviolet lamp based magnetic field enhanced photoelectron ionization and single photon ionization source for online time-of-flight mass spectrometry[J]. Analytical Chemistry, 2011, 83(23): 8992–8998. doi: 10.1021/ac201791n
    [84]
    HUA L, WU Q, HOU K, et al. Single photon ionization and chemical ionization combined ion source based on a vacuum ultraviolet lamp for orthogonal acceleration time-of-flight mass spectrometry[J]. Analytical Chemistry, 2011, 83(13): 5309–5316. doi: 10.1021/ac200742r
    [85]
    HUA L, HOU K, CHEN P, et al. Realization of in-source collision-induced dissociation in single-photon ionization time-of-flight mass spectrometry and its application for differentiation of isobaric compounds[J]. Analytical Chemistry, 2015, 87(4): 2427–2433. doi: 10.1021/ac5043768
    [86]
    CHEN P, HOU K Y, HUA L, et al. Quasi-trapping chemical ionization source based on a commercial VUV lamp for time-of-flight mass spectrometry[J]. Analytical Chemistry, 2014, 86(3): 1332–1336. doi: 10.1021/ac403132k
    [87]
    齐雅晨, 刘巍, 蒋吉春, 等. 无窗射频放电单光子电离质谱在线监测氯苯的研究[J]. 质谱学报, 2015, 36(6): 506–512. doi: 10.7538/zpxb.2015.36.06.0506

    QI Y C, LIU W, JIANG J C, et al. On-line analysis of cholrobenzenes by windowless RF discharge signal photon ionization mass spectrometer[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(6): 506–512. doi: 10.7538/zpxb.2015.36.06.0506
    [88]
    张晓愿. 两种典型醇类燃料燃烧的实验和模型研究[D]. 合肥: 中国科学技术大学, 2016.

    ZHANG X Y. Experimental and kinetic modeling study of two typical alcohol fuels combustion[D]. Heifei: University of Science and Technology of China, 2016.
    [89]
    李天宇. 热解气氛下若干关键芳烃生成的燃料协同效应研究[D]. 合肥: 中国科学技术大学, 2017.

    LI T Y. Study of synergistic effect during the formation of some key aromatic hydrocarbons in pyrolysis atmosphere[D]. Heifei: University of Science and Technology of China, 2017.
    [90]
    孙雯禹. 几种新型含氧燃料的燃烧反应动力学研究[D]. 北京: 清华大学, 2018.

    SUN W Y. Investigations into the combustion kinetics of several novel oxygenated fuels[D]. Beijing: Tsinghua University, 2018.
    [91]
    A. TAATJES C, HANSEN N, L. OSBORN D, et al. “Imaging” combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry[J]. Physical Chemistry Chemical Physics, 2008, 10(1): 20–34. doi: 10.1039/B713460F
    [92]
    LI W, WANG G, LI Y, et al. Experimental and kinetic modeling investigation on pyrolysis and combustion of n-butane and i-butane at various pressures[J]. Combustion and Flame, 2018, 191: 126–141. doi: 10.1016/j.combustflame.2018.01.002
    [93]
    MOSHAMMER K, JASPER A W, POPOLAN-VAIDA D M, et al. Quantification of the keto-hydroperoxide (HOOCH2OCHO) and other elusive intermediates during low-temperature oxidation of dimethyl ether[J]. The Journal of Physical Chemistry A, 2016, 120(40): 7890–7901. doi: 10.1021/acs.jpca.6b06634
    [94]
    HANSEN N, COOL T A, WESTMORELAND P R, et al. Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry[J]. Progress in Energy and Combustion Science, 2009, 35(2): 168–191. doi: 10.1016/j.pecs.2008.10.001
    [95]
    闫博, 李猛, 陈力, 等. 基于滤波瑞利散射技术的带压燃烧场温度测量实验研究[J]. 实验流体力学, 2019, 33(4): 27–32. doi: 10.11729/syltlx20180168

    YAN B, LI M, CHEN L, et al. Experimental study on temperature measurement of high pressure combustion based on filtered rayleigh scattering technology[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 27–32. doi: 10.11729/syltlx20180168
    [96]
    刘高恩, 王华芳, 吕品, 等. 飞机发动机排气污染物的测量[J]. 航空动力学报, 2003(3): 348–352. doi: 10.13224/j.cnki.jasp.2003.03.008

    LIU G E, WANG H F, LV P, et al. Gas turbine engine emissions measurement[J]. Journal of Aerospace Power, 2003(3): 348–352. doi: 10.13224/j.cnki.jasp.2003.03.008
    [97]
    王明瑞, 肖阳, 韩冰, 等. 航空燃气涡轮发动机燃气分析测试及计算方法[J]. 航空动力学报, 2015, 30(11): 2568–2574. doi: 10.13224/j.cnki.jasp.2015.11.002

    WANG M R, XIAO Y, HAN B, et al. Gas analysis test and calculation method of aeroengine[J]. Journal of Aerospace Power, 2015, 30(11): 2568–2574. doi: 10.13224/j.cnki.jasp.2015.11.002
    [98]
    李乐, 索建秦, 于涵, 等. 燃气分析系统优化设计及应用研究[J]. 西北工业大学学报, 2020, 38(1): 104–113. doi: 10.1051/jnwpu/20203810104

    LI L, SUO J Q, YU H. Optimization design and application research of gas analysis system[J]. Journal of Northwestern Polytechnical University, 2020, 38(1): 104–113. doi: 10.1051/jnwpu/20203810104
    [99]
    ADAM T, STREIBEL T, MITSCHKE S, et al. Application of time-of-flight mass spectrometry with laser-based photoionization methods for analytical pyrolysis of PVC and tobacco[J]. Journal of Analytical and Applied Pyrolysis, 2005, 74(1): 454–464. doi: 10.1016/j.jaap.2004.11.021
    [100]
    ZHOU Z Y, WANG Y, TANG X F, et al. A new apparatus for study of pressure-dependent laminar premixed flames with vacuum ultraviolet photoionization mass spectrometry[J]. Review of Scientific Instruments, 2013, 84(1): 014101. doi: 10.1063/1.4773541
    [101]
    YANG B, OSSWALD P, LI Y, et al. Identification of combustion intermediates in isomeric fuel-rich premixed butanol-oxygen flames at low pressure[J]. Combustion and Flame, 2007, 148(4): 198–209. doi: 10.1016/j.combustflame.2006.12.001
    [102]
    YANG R, YANG B, HUANG C Q, et al. VUV photoionization study of the allyl radical from premixed gasoline/oxygen flame[J]. Chinese Journal of Chemical Physics, 2006(01): 25–28 + 93.
    [103]
    LI Y, QI F. Recent applications of synchrotron VUV photoionization mass spectrometry: insight into combustion chemistry[J]. Accounts of Chemical Research, 2010, 43(1): 68–78. doi: 10.1021/ar900130b
    [104]
    李亚娟, 王明瑞, 韩冰, 等. 燃气分析法测试燃气轮机主燃烧室燃烧效率、气态污染物误差分析[J]. 航空动力学报, 2017, 32(5): 1051–1057. doi: 10.13224/j.cnki.jasp.2017.05.004

    LI Y J, WANG M R, HAN B, et al. Gas turbine primary combustor error analysis of combustion efficiency and exhaust emission using gas analysis method[J]. Journal of Aerospace Power, 2017, 32(5): 1051–1057. doi: 10.13224/j.cnki.jasp.2017.05.004
    [105]
    王明瑞, 王振华, 韩冰, 等. 航空发动机主燃烧室高温测试技术[J]. 航空发动机, 2016, 42(5): 87–93. doi: 10.13477/j.cnki.aeroengine.2016.05.015

    WANG M R, WANG Z H, HAN B, et al. High temperature measurement technology for main combustion chamber of aeroengine[J]. Aeroengine, 2016, 42(5): 87–93. doi: 10.13477/j.cnki.aeroengine.2016.05.015
    [106]
    STRUCKMEIER U, OSSWALD P, KASPER T, et al. Sampling probe influences on temperature and species concentrations in molecular beam mass spectroscopic investigations of flat premixed low-pressure flames[J]. Zeitschrift für Physikalische Chemie, 2009, 223(4-5): 503–537. doi: 10.1524/zpch.2009.6049
    [107]
    SKEEN S A, YANG B, MICHELSEN H A, et al. Studies of laminar opposed-flow diffusion flames of acetylene at low-pressures with photoionization mass spectrometry[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1067–1075. doi: 10.1016/j.proci.2012.06.075
    [108]
    TAO T, SUN W, HANSEN N, et al. Exploring the negative temperature coefficient behavior of acetaldehyde based on detailed intermediate measurements in a jet-stirred reactor[J]. Combustion and Flame, 2018, 192: 120–129. doi: 10.1016/j.combustflame.2018.01.048
    [109]
    OSSWALD P, GÜLDENBERG H, KOHSE-HÖINGHAUS K, et al. Combustion of butanol isomers-a detailed molecular beam mass spectrometry investigation of their flame chemistry[J]. Combustion and Flame, 2011, 158(1): 2–15. doi: 10.1016/j.combustflame.2010.06.003
    [110]
    陶涛. 宽范围下乙醛燃烧反应动力学的实验与模型研究[D]. 北京: 清华大学, 2018.

    TAO T. Experimental and modeling investigations on the combustion kinetics of acetaldehyde under a wide range conditions[D]. Beijing: Tsinghua University, 2018.
    [111]
    LIU D, TOGBÉ C, TRAN L S, et al. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography-Part I: Furan[J]. Combustion and Flame, 2014, 161(3): 748–765. doi: 10.1016/j.combustflame.2013.05.028
    [112]
    SCHENK M, LEON L, MOSHAMMER K, et al. Detailed mass spectrometric and modeling study of isomeric butene flames[J]. Combustion and Flame, 2013, 160(3): 487–503. doi: 10.1016/j.combustflame.2012.10.023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (174) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return