Volume 37 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
ZHAO J, LIU C Y, WANG Y F, et al. Research on calibration method of aeroengine temperature rise combustion efficiency[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 49-55 doi: 10.11729/syltlx20220139
Citation: ZHAO J, LIU C Y, WANG Y F, et al. Research on calibration method of aeroengine temperature rise combustion efficiency[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 49-55 doi: 10.11729/syltlx20220139

Research on calibration method of aeroengine temperature rise combustion efficiency

doi: 10.11729/syltlx20220139
  • Received Date: 2022-12-08
  • Accepted Date: 2023-05-16
  • Rev Recd Date: 2023-05-08
  • Publish Date: 2023-10-30
  • Combustion efficiency is a key pneumatic performance parameter of the aeroengine, and its accurate acquisition is important for improving performance quality of aeroengines, saving fuel, reducing emission and overall performance matching of the combustion chamber. For accurate acquistion of the aeroengine temperature rise combustion efficiency, an inlet reference temperature sensor, an outlet reference temperature sensor and a medium temperature sensor with high accuracy are designed,measurementpoint correction factor is proposed and used based on the combination of the outlet reference sensor and medium temperature sensor, and field calibration of the aeroengine temperature rise combustion efficiency is realized. The results show that the adopted temperature rise combustion efficiency calibration method is reasonable, the calibration result is reliable, and the relative deviation between the temperature rise combustion efficiency measured by the reference temperature sensors and computed by the gas analysis combustion efficiency is 0.3% to 2.1%, and thus the method can solve the calibration problem of the aeroengine temperature rise combustion efficiency.
  • loading
  • [1]
    张宝诚. 航空发动机燃烧室的现状和发展[J]. 航空发动机, 2013, 39(6): 67–73.

    ZHANG B C. Status and development of aeroengine combustors[J]. Aeroengine, 2013, 39(6): 67–73.
    [2]
    刁瑶朋, 柴昕. 放大型喷嘴对航空发动机燃烧性能的影响[J]. 沈阳航空航天大学学报, 2015, 32(2): 38–42.

    DIAO Y P, CHAI X. Effect of flux magnified injector on aero-engine combustion performance[J]. Journal of Shenyang Aerospace Ace University, 2015, 32(2): 38–42.
    [3]
    门玉宾, 柴昕, 张羽鹏, 等. 整机条件下主燃烧室参数测量研究[J]. 航空发动机, 2015, 41(2): 81–84. doi: 10.13477/j.cnki.aeroengine.2015.02.017

    MEN Y B, CHAI X, ZHANG Y P, et al. Parameters measurement investigation of a combustor in engine testing[J]. Aeroengine, 2015, 41(2): 81–84. doi: 10.13477/j.cnki.aeroengine.2015.02.017
    [4]
    Mongia H C. TAPS: A 4th generation propulsion combustor technology for low emissions[R]. AIAA-2003-2657, 2003.
    [5]
    LEPICOVSKY J. Effects of a rotating aerodynamic probe on the flow field of a compressor rotor[R]. NASA/CR-2008-215215, 2008
    [6]
    VAN ERP C A, RICHMAN M H. Technical challenges associated with the development of advanced combustion systems [C]// Proc of the Applied Vehicle Technology Panel Symposium Organized by the Former AGARD Propulsion and Energetics Panel. 1998: 124-132.
    [7]
    MEYER T R, BROWN M S, FONOV S, et al. Optical diagnostics and numerical characterization of a trapped-vortex combustor[R]. AIAA-2002-3863, 2002. doi: 10.2514/6.2002-3863
    [8]
    李亚娟, 王明瑞, 葛新, 等. 基于燃气分析法的航空发动机燃烧室性能研究[J]. 航空发动机, 2016, 42(1): 37–41. doi: 10.13477/j.cnki.aeroengine.2016.01.008

    LI Y J, WANG M R, GE X, et al. Research on aeroengine combustor performance based on gas analysis method[J]. Aeroengine, 2016, 42(1): 37–41. doi: 10.13477/j.cnki.aeroengine.2016.01.008
    [9]
    王明瑞, 肖阳, 韩冰, 等. 航空燃气涡轮发动机燃气分析测试及计算方法[J]. 航空动力学报, 2015, 30(11): 2568–2574. doi: 10.13224/j.cnki.jasp.2015.11.002

    WANG M R, XIAO Y, HAN B, et al. Gas analysis test and calculation method of aeroengine[J]. Journal of Aerospace Power, 2015, 30(11): 2568–2574. doi: 10.13224/j.cnki.jasp.2015.11.002
    [10]
    赵俭. 基于双热传导方程的高温燃气温度传感器设计方法[J]. 计量学报, 2022, 43(2): 215–221. doi: 10.3969/j.issn.1000-1158.2022.02.13

    ZHAO J. Design method of high gas temperature sensor based on double heat conduction equation[J]. Acta Metrologica Sinica, 2022, 43(2): 215–221. doi: 10.3969/j.issn.1000-1158.2022.02.13
    [11]
    CHERNOVSKY M, ATREYA A, SACKSTEDER K. Transient measurements of temperature and radiation intensity in spherical microgravity diffusion flames[C]//Proc of the 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006. doi: 10.2514/6.2006-746
    [12]
    吴朋, 林涛. 基于QGA-SVM的铠装热电偶传感器辨识建模研究[J]. 仪器仪表学报, 2014, 35(2): 343–349. doi: 10.3969/j.issn.0254-3087.2013.04.019

    WU P, LIN T. Research on identification modeling of sheathed thermocouple sensor based on hybrid QGA-SVM[J]. Chinese Journal of Scientific Instrument, 2014, 35(2): 343–349. doi: 10.3969/j.issn.0254-3087.2013.04.019
    [13]
    廖理. 热学计量[M]. 北京: 原子能出版社, 2002: 714-717.
    [14]
    杨兆欣, 顾正华, 张文清, 等. 基于热电偶的低速风洞气流温度误差补偿方法[J]. 仪器仪表学报, 2022, 43(5): 68–76. doi: 10.19650/j.cnki.cjsi.J2108335

    YANG Z X, GU Z H, ZHANG W Q, et al. The error compensation method of the low-speed wind tunnel flow temperature based on the thermocouple[J]. Chinese Journal of Scientific Instrument, 2022, 43(5): 68–76. doi: 10.19650/j.cnki.cjsi.J2108335
    [15]
    曾祥辉, 齐乐华, 肖渊, 等. 均匀液滴喷射过程中温度的测量及计算[J]. 仪器仪表学报, 2011, 32(1): 93–98. doi: 10.3321/j.issn:0254-3087.2009.03.027

    ZENG X H, QI L H, XIAO Y, et al. Droplet temperature measurement and calculation during spray process[J]. Chinese Journal of Scientific Instrument, 2011, 32(1): 93–98. doi: 10.3321/j.issn:0254-3087.2009.03.027
    [16]
    ITO Y, INOKURA N, NAGASAKI T. Conjugate heat transfer in air-to-refrigerant airfoil heat exchangers[J]. ASME Journal of Heat and Transfer, 2014, 136(8): 081703. doi: 10.1115/1.4027554
    [17]
    DUKHAN N, AL-RAMMAHI M A, SULEIMAN A S. Fluid temperature measurements inside metal foam and comparison to Brinkman-Darcy flow convection analysis[J]. International Journal of Heat and Mass Transfer, 2013, 67: 877–884. doi: 10.1016/j.ijheatmasstransfer.2013.08.055
    [18]
    ZHENG C H, CHENG L M, SAVELIEV A, et al. Gas and solid phase temperature measurements of porous media combustion[J]. Proceedings of the Combustion Institute, 2011, 33(2): 3301–3308. doi: 10.1016/j.proci.2010.05.037
    [19]
    GUMEN V, ILLYAS B, MAQSOOD A, et al. High-temperature thermal conductivity of ceramic fibers[J]. Journal of Materials Engineering and Performance, 2001, 10(4): 475–478. doi: 10.1361/105994901770344917
    [20]
    STOUFFER S, BALLAL D, ZELINA J, et al. Development and combustion performance of a high pressure WSR and TAPS combustor[R]. AIAA-2005-1416, 2005.
    [21]
    赵俭, 杨永军. 气流温度测量技术[M]. 北京: 中国质检出版社, 2017: 98-106.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(9)

    Article Metrics

    Article views (185) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return