Volume 37 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
SONG J Y, LI T, ZHANG J Y. Research on aerodynamic characteristics of evacuated tube train in dynamic operation[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 64-71 doi: 10.11729/syltlx20220121
Citation: SONG J Y, LI T, ZHANG J Y. Research on aerodynamic characteristics of evacuated tube train in dynamic operation[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 64-71 doi: 10.11729/syltlx20220121

Research on aerodynamic characteristics of evacuated tube train in dynamic operation

doi: 10.11729/syltlx20220121
  • Received Date: 2022-11-01
  • Accepted Date: 2022-12-09
  • Rev Recd Date: 2022-11-24
  • Available Online: 2023-03-10
  • Publish Date: 2023-02-25
  • The research on aerodynamic characteristics of the evacuated tube train provides a reference for the construction of ETT(Evacuated Tube Train) test platform. A 3-dimensional model was established, and the SST kω model was used to solve the flow field. The aerodynamic resistance, pressure distribution and flow field characteristics under constant speed and acceleration conditions were compared, and the influence mechanism of acceleration on the aerodynamic resistance was revealed. The results show that the aerodynamic drag of the head car and the tail car is mainly affected by the choked flow and the detach of the tail shock. In no-choked state, the drag of the tail car increases slowly while that of the head car is unchanged. Compared with the acceleration condition, the reflection of the oblique shock caused by the large starting speed leads to the pressure fluctuation on the train surface, and the amplitude of the fluctuation gradually decreaseswith time. As the head car compresses the front air slowly and the precursor shock wave is weak under the acceleration condition, the changes of the aerodynamic resistance and surrounding pressure of the head car lags behind that of the running speed, and the smaller the acceleration is, the more obvious the lagging effect is. In the stage of uniform speed, the length of the choked section and the tail shock is proportional to the operation time.
  • loading
  • [1]
    沈志云. 关于我国发展真空管道高速交通的思考[J]. 西南交通大学学报, 2005, 40(2): 133–137. doi: 10.3969/j.issn.0258-2724.2005.02.001

    SHEN Z Y. On developing high-speed evacuated tube transportation in China[J]. Journal of Southwest Jiaotong University, 2005, 40(2): 133–137. doi: 10.3969/j.issn.0258-2724.2005.02.001
    [2]
    MUSK E. Hyperloop Alpha[JB/OL]. [2022-10-27]. https://www.tesla.com.
    [3]
    熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008

    XIONG J Y, DENG Z G. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008
    [4]
    JANG K S, LE T T G, KIM J, et al. Effects of compressible flow phenomena on aerodynamic characteristics in Hyperloop system. Aerospace Science and Technology, 2021, 117, 106970. doi: 10.1016/j.ast.2021.106970
    [5]
    NIU J Q, SUI Y, YU Q J, et al. Numerical study on the impact of Mach number on the coupling effect of aerodynamic heating and aerodynamic pressure caused by a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 100–111. doi: 10.1016/j.jweia.2019.04.001
    [6]
    NIU J Q, SUI Y, YU Q J, et al. Effect of acceleration and deceleration of a capsule train running at transonic speed on the flow and heat transfer in the tube[J]. Aerospace Science and Technology, 2020, 105: 105977. doi: 10.1016/j.ast.2020.105977
    [7]
    KIM T K, KIM K H, KWON H B. Aerodynamic characteristics of a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(12): 1187–1196. doi: 10.1016/j.jweia.2011.09.001
    [8]
    CHOI J K, KIM K H. Effects of nose shape and tunnel cross-sectional area on aerodynamic drag of train traveling in tunnels[J]. Tunnelling and Underground Space Technology, 2014, 41: 62–73. doi: 10.1016/j.tust.2013.11.012
    [9]
    ZHOU P, ZHANG J Y, LI T, et al. Numerical study on wave phenomena produced by the super high-speed evacuated tube maglev train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 61–70. doi: 10.1016/j.jweia.2019.04.003
    [10]
    周鹏, 李田, 张继业, 等. 真空管道超级列车激波簇结构研究[J]. 机械工程学报, 2020, 56(2): 86–97. doi: 10.3901/JME.2020.02.086

    ZHOU P, LI T, ZHANG J Y, et al. Research on shock wave trains generated by the hyper train in the evacuated tube[J]. Journal of Mechanical Engineering, 2020, 56(2): 86–97. doi: 10.3901/JME.2020.02.086
    [11]
    周鹏, 李田, 张继业, 等. 真空管道超级列车气动热效应[J]. 机械工程学报, 2020, 56(8): 190–199. doi: 10.3901/JME.2020.08.190

    ZHOU P, LI T, ZHANG J Y, et al. Aerothermal effect generated by hyper train in the evacuated tube[J]. Journal of Mechanical Engineering, 2020, 56(8): 190–199. doi: 10.3901/JME.2020.08.190
    [12]
    宋嘉源, 李田, 张晓涵, 等. 亚声速真空管道磁浮系统气动热特性研究[J]. 空气动力学学报, 2022, 40(2): 115–121. doi: 10.7638/kqdlxxb-2021.0227

    SONG J Y, LI T, ZHANG X H, et al. Research on aerodynamic and thermal characteristics of subsonic evacuated tube maglev system[J]. Acta Aerodynamica Sinica, 2022, 40(2): 115–121. doi: 10.7638/kqdlxxb-2021.0227
    [13]
    胡啸, 邓自刚, 张银龙, 等. 真空管道磁浮交通管内波系时空分布特征[J]. 空气动力学学报, 2022, 40(6): 146–154. doi: 10.7638/kqdlxxb-2021.0242

    HU X, DENG Z G, ZHANG Y L, et al. Characteristics of spatial and temporal distribution of wave system in evacuated tube maglev transportation[J]. Acta Aerodynamica Sinica, 2022, 40(6): 146–154. doi: 10.7638/kqdlxxb-2021.0242
    [14]
    胡啸, 马天昊, 王潇飞, 等. 真空管道磁浮交通车体热压载荷分布特征及其非定常特性[J/OL]. [2022-10-27]. 实验流体力学. http://www.syltlx.com/cn/article/doi/10.11729/syltlx20220084.

    HU X, MA T H, WANG X F, et al. Distribution and unsteady characteristics of the temperature and pressure loads acting on the car-body in evacuated tube maglev transport[J/OL]. [2022-10-27]. Journal of Experiments in Fluid Mechanics. http://www.syltlx.com/cn/article/doi/10.11729/syltlx20220084.doi: 10.11729/syltlx20220084
    [15]
    HOU Z H, ZHU Y J, BO J L, et al. A quasi-one-dimensional study on global characteristics of tube train flows[J]. Physics of Fluids, 2022, 34(2): 026104. doi: 10.1063/5.0080544
    [16]
    张晓涵, 李田, 张继业, 等. 亚音速真空管道列车气动壅塞及激波现象[J]. 机械工程学报, 2021, 57(4): 182–190. doi: 10.3901/JME.2021.04.182

    ZHANG X H, LI T, ZHANG J Y, et al. Aerodynamic choked flow and shock wave phenomena of subsonic evacuated tube train[J]. Journal of Mechanical Engineering, 2021, 57(4): 182–190. doi: 10.3901/JME.2021.04.182
    [17]
    LI T, SONG J Y, ZHANG X H, et al. Theoretical and numerical studies on compressible flow around a subsonic evacuated tube train[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(15): 8261–8271. doi: 10.1177/09544062221087826
    [18]
    BI H Q, WANG Z H, WANG H L, et al. Aerodynamic phenomena and drag of a maglev train running dynamically in a vacuum tube[J]. Physics of Fluids, 2022, 34(9): 096111. doi: 10.1063/5.0104819
    [19]
    林建忠, 阮晓东, 陈邦国. 流体力学[M]. 2版. 北京: 清华大学出版社, 2013.

    LIN J Z, RUAN X D, CHEN B G. Fluid mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2013.
    [20]
    吴子牛. 空气动力学[M]. 北京: 清华大学出版社, 2007.

    WU Z N. Aerodynamics[M]. Beijing: Tsinghua University Press, 2007.
    [21]
    TRIMPI R L, COHEN N B. A theory for predicting the flow of real gases in shock tubes with experimental verification[R]. Technical note 3375, 1955.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)

    Article Metrics

    Article views (3190) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return