Volume 37 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
WEI K, LAI J W, MEI Y G. Characteristics of car body pressure load of 600 km/h maglev trains crossing in tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 82-90 doi: 10.11729/syltlx20220117
Citation: WEI K, LAI J W, MEI Y G. Characteristics of car body pressure load of 600 km/h maglev trains crossing in tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 82-90 doi: 10.11729/syltlx20220117

Characteristics of car body pressure load of 600 km/h maglev trains crossing in tunnel

doi: 10.11729/syltlx20220117
  • Received Date: 2022-11-01
  • Accepted Date: 2022-12-12
  • Rev Recd Date: 2022-12-08
  • Available Online: 2023-03-10
  • Publish Date: 2023-02-25
  • With the rapid increase of the train speed, aerodynamic effect has a more serious impact on the pressure load of the car body, and the trains crossing in the tunnel is more violent than that of a single train passing through the tunnel. In order to research the aerodynamic load of maglev train crossing in the tunnel, the one-dimensional unsteady compressible non-homentropic flow model method was adopted. The distribution characteristics of the maximum positive pressure, negative pressure and maximum pressure (maximum positive and negative pressure and maximum peak pressure) of the car body were analyzed and the influence characteristics of the tunnel length, speed and blocking ratio on the external pressure were researched. The results show that the maximum negative pressure value of the car body is much greater than the maximum positive pressure value during the train crossing in the tunnel; only when the tunnel length exceeds a certain value, would the maximum positive and negative pressure value of the car body appear in the head and tail train, respectively; the maximum pressure values of the head and tail cars remain constant after the tunnel length exceeds 2 km, and the maximum positive pressure values of the head and tail cars at different speeds basically coincide, which are close to “zero”; when the tunnel length is within a certain range, the maximum pressure is proportional to the square of the speed; and the maximum pressure increases linearly with the increase of the blocking ratio. The findings of this research can provide support for the car body aerodynamic fatigue strength design.
  • loading
  • [1]
    PETERS J L. Aerodynamics of very high speed trains and maglev vehicles: state of the art and future potential[J]. International Journal of Vehicle Design, 1983, 3: 308–341.
    [2]
    SCHETZ J A. Aerodynamics of high-speed trains[J]. Annual Review of Fluid Mechanics, 2001, 33: 371–414. doi: 10.1146/annurev.fluid.33.1.371
    [3]
    NIU J Q, SUI Y, YU Q J, et al. Aerodynamics of railway train/tunnel system: a review of recent research[J]. Energy and Built Environment, 2020, 1(4): 351–375. doi: 10.1016/j.enbenv.2020.03.003
    [4]
    TIELKES T. Aerodynamic aspects of maglev systems[C]// Proc of the 19th international conference on magnetically levitated systems and linear drives. 2006.
    [5]
    寺本紀彬, 佐々木, 英夫植田, et al. 山梨リニア実験線のトネルン建設[J]. トンネル·地下, 1992, 12(4): 15–27.
    [6]
    YAMAMOTO K, KOZUMA Y, TAGAWA N, et al. Improving maglev vehicle characteristics for the yamanashi test line[J]. Quarterly Report of RTRI, 2004, 45(1): 7–12. doi: 10.2219/rtriqr.45.7
    [7]
    菅沢正浩, 保坂史郎, 岩本孝昌, et al. 山梨リニア実験線新型車両の走行試験結果概要[C]//鉄道技術連合シンポジウム(j-rail)講演論文集. 2003: 305-308.
    [8]
    山崎, 幹男, 若原, et al. 超高速鉄道トンネル内に生じる圧力変動評価[C]//土木学会論文集. 2003: 171-189.
    [9]
    杉本直, 川崎卓巳, 神岡光浩. 超高速に挑む-山梨実験線リニア車両[J]. 川崎重工技報, 2006(160): 8–15.
    [10]
    SAITO S, IIDA M, KAJIYAMA H. Numerical simulation of 1-D unsteady compressible flow in railway tunnels[J]. Jour-nal of Environment and Engineering, 2011, 6(4): 723–738. doi: 10.1299/jee.6.723
    [11]
    HUANG S, LI Z W, YANG M Z. Aerodynamics of high-speed maglev trains passing each other in open air[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 188: 151–160. doi: 10.1016/j.jweia.2019.02.025
    [12]
    梅元贵, 周朝晖, 许建林. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009.

    MEI Y G, ZHOU C H, XU J L. Aerodynamics of high-speed railway tunnel[M]. Beijing: Science Press, 2009.
    [13]
    MEI Y G. A generalized numerical simulation method for pressure waves generated by high-speed trains passing through tunnels[J]. Advances in Structural Engineering, 2013, 16(8): 1427–1436. doi: 10.1260/1369-4332.16.8.1427
    [14]
    梅元贵, 赵汗冰, 陈大伟, 等. 时速600 km磁浮列车驶入隧道时初始压缩波特征的数值模拟[J]. 交通运输工程学报, 2020, 20(1): 120–131.

    MEI Y G, ZHAO H B, CHEN D W, et al. Numerical simulation of initial compression wave characteristics of 600 km·h-1 maglev train entering tunnel[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 120–131.
    [15]
    梅元贵, 张志超, 杜健, 等. 高速磁浮单列车通过隧道时车外压力数值模拟研究[J]. 中国铁道科学, 2021, 42(6): 78–89. doi: 10.3969/j.issn.1001-4632.2021.06.09

    MEI Y G, ZHANG Z C, DU J, et al. Numerical simulation of external pressure caused by high-speed maglev single train passing tunnel[J]. China Railway Science, 2021, 42(6): 78–89. doi: 10.3969/j.issn.1001-4632.2021.06.09
    [16]
    毕海权, 雷波, 张卫华. TR磁浮列车湍流外流场数值计算[J]. 西南交通大学学报, 2005, 40(1): 5–8. doi: 10.3969/j.issn.0258-2724.2005.01.002

    BI H Q, LEI B, ZHANG W H. Numerical calculation for turbulent flow around TR maglev train[J]. Journal of Southwest Jiaotong University, 2005, 40(1): 5–8. doi: 10.3969/j.issn.0258-2724.2005.01.002
    [17]
    梁习锋, 沈娴雅. 环境风与列车交会耦合作用下磁浮列车横向气动性能[J]. 中南大学学报(自然科学版), 2007, 38(4): 751–757.

    LIANG X F, SHEN X Y. Lateral aerodynamic performances of maglev train when two trains meet with wind blowing[J]. Journal of Central South University (Science and Tech-nology), 2007, 38(4): 751–757.
    [18]
    焦齐柱, 肖明清, 周俊超, 等. 基于乘员耳感舒适性的时速600 km磁悬浮单线隧道最优净空面积研究[J]. 铁道科学与工程学报, 2020, 17(12): 2993–3002.

    JIAO Q Z, XIAO M Q, ZHOU J C, et al. Study on the optimal clearance area of a single line maglev tunnel with a speed of 600 km/h based on the ear comfort of passengers[J]. Journal of Railway Science and Engineering, 2020, 17(12): 2993–3002.
    [19]
    张志超, 杜健, 赵汗冰, 等. 高速磁浮单线隧道车体压力载荷特征[J]. 铁道科学与工程学报, 2021, 18(1): 21–30. doi: 10.19713/j.cnki.43-1423/u.t20200201

    ZHANG Z C, DU J, ZHAO H B, et al. Pressure load characteristics of high-speed maglev single-track tunnels[J]. Journal of Railway Science and Engineering, 2021, 18(1): 21–30. doi: 10.19713/j.cnki.43-1423/u.t20200201
    [20]
    黄莎, 李志伟, 杨明智, 等. 高速磁浮列车通过隧道群时的压力波特性[J]. 中南大学学报(自然科学版), 2022, 53(5): 1770–1781.

    HUANG S, LI Z W, YANG M Z, et al. Pressure wave characteristics of high-speed maglev train passing through tunnel groups[J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1770–1781.
    [21]
    张洁, 王雨舸, 韩帅, 等. 缓冲结构长度对600 km/h磁浮列车通过隧道时的压力波特性影响分析[J]. 中南大学学报(自然科学版), 2022, 53(5): 1668–1678.

    ZHANG J, WANG Y G, HAN S, et al. Influence of hood length on pressure wave characteristics induced by 600 km/h maglev train passing through tunnel[J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1668–1678.
    [22]
    李颢豪, 杨明智, 孔学舟. 不同高度声屏障对磁浮列车气动效应影响研究[J]. 铁道科学与工程学报, 2017, 14(4): 819–826. doi: 10.3969/j.issn.1672-7029.2017.04.021

    LI H H, YANG M Z, KONG X Z. Influence of the height of sound barrier on aerodynamic effects of maglev train[J]. Journal of Railway Science and Engineering, 2017, 14(4): 819–826. doi: 10.3969/j.issn.1672-7029.2017.04.021
    [23]
    周细赛, 刘堂红, 陈争卫, 等. 头部主型线变化对列车隧道交会气动性能的影响[J]. 中南大学学报(自然科学版), 2018, 49(2): 493–501.

    ZHOU X S, LIU T H, CHEN Z W, et al. Influence of head outlines on aerodynamic effect of two trains intersecting in tunnel[J]. Journal of Central South University (Science and Technology), 2018, 49(2): 493–501.
    [24]
    王磊, 骆建军, 李飞龙. 高速列车过双线隧道气动效应及列车风特性[J]. 哈尔滨工业大学学报, 2021, 53(9): 43–52. doi: 10.11918/202011011

    WANG L, LUO J J, LI F L. Aerodynamic effects and train wind characteristics of high-speed train passing through double-track tunnel[J]. Journal of Harbin Institute of Technology, 2021, 53(9): 43–52. doi: 10.11918/202011011
    [25]
    YANG M Z, ZHONG S, ZHANG L, et al. 600 km/h moving model rig for high-speed train aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 227: 105063. doi: 10.1016/j.jweia.2022.105063
    [26]
    张雷, 林晓龙, 尹小放, 等. 线间距对400 km/h高速列车隧道交会气动性能的影响[J]. 高速铁路技术, 2021, 12(2): 43–49. doi: 10.12098/j.issn.1674-8247.2021.02.008

    ZHANG L, LIN X L, YIN X F, et al. Influence of distance between centers of tracks on the aerodynamic performance of 400 km/h high-speed trains meeting in tunnels[J]. High Speed Railway Technology, 2021, 12(2): 43–49. doi: 10.12098/j.issn.1674-8247.2021.02.008
    [27]
    李艳, 魏德豪, 秦登, 等. 时速400 km+高速列车交会压力波特性研究[J]. 铁道工程学报, 2021, 38(8): 25–29,35. doi: 10.3969/j.issn.1006-2106.2021.08.006

    LI Y, WEI D H, QIN D, et al. Research on the pressure wave characteristics of high-speed trains passing each other at speeds of 400 km/h and above[J]. Journal of Railway Engineering Society, 2021, 38(8): 25–29,35. doi: 10.3969/j.issn.1006-2106.2021.08.006
    [28]
    王志钧, 李艳, 魏康, 等. 400 km/h动车组车体压力载荷隧道参数影响特征研究[J]. 高速铁路技术, 2021, 12(5): 46–51,67.

    WANG Z J, LI Y, WEI K, et al. Study on influence of tunnel parameters on pressure load of carbody of 400 km/h EMU[J]. High Speed Railway Technology, 2021, 12(5): 46–51,67.
    [29]
    陆意斌, 王田天, 张雷, 等. 时速400 km不同编组列车通过隧道时的气动载荷[J]. 中南大学学报(自然科学版), 2022, 53(5): 1855–1866.

    LU Y B, WANG T T, ZHANG L, et al. Aerodynamic loads of trains with different formations passing through and intersecting in tunnels at 400 km/h[J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1855–1866.
    [30]
    国家铁路局. 磁浮铁路技术标准: TB 10630—2019[S]. 北京: 中国铁道出版社, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article Metrics

    Article views (3455) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return