Volume 37 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
GAO C, YAN R H, WU B, et al. Study on the influence of atmospheric environment change on the temperature field of vacuum tube[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 72-81 doi: 10.11729/syltlx20220116
Citation: GAO C, YAN R H, WU B, et al. Study on the influence of atmospheric environment change on the temperature field of vacuum tube[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 72-81 doi: 10.11729/syltlx20220116

Study on the influence of atmospheric environment change on the temperature field of vacuum tube

doi: 10.11729/syltlx20220116
  • Received Date: 2022-11-01
  • Accepted Date: 2023-01-08
  • Rev Recd Date: 2022-12-24
  • Available Online: 2023-02-17
  • Publish Date: 2023-02-25
  • The temperature distribution in the vacuum tube directly affects the aerodynamic performance and operation safety of the maglev train. It is of great significance to study the influence of the atmospheric environment effect for the construction of the vacuum tube train transportation system in the future. The parameters of the atmospheric environment such as the solar radiation intensity, air humidity, temperature and wind speed in each season are obtained by collecting meteorological data of Chengdu in recent five years. The numerical calculation method of the radiation heat transfer from the vacuum tube is established. The DO (Discrete Ordinate) radiation model was used to study the influence of solar radiation on the air flow in the vacuum tube, and the temperature distribution and variation rule of the air flow in the tube under conditions of different seasons and different vacuum degrees were obtained. The results show that the air in the tube has a stable temperature rise under the influence of solar radiation. With the same vacuum degree, the temperature in the vacuum tube is the highest in summer and the lowest in winter. With the gradual decrease of the vacuum degree, the temperature of the air flow in the tube increases gradually in each season. When the vacuum degree is 0.1 atm (~10.1 kPa), the air temperature in the vacuum tube increases by 56.60 K in summer.
  • loading
  • [1]
    倪章松, 张军, 符澄, 等. 磁浮飞行风洞试验技术及应用需求分析[J]. 空气动力学学报, 2021, 39(5): 95–110. doi: 10.7638/kqdlxxb-2021.0206

    NI Z S, ZHANG J, FU C, et al. Analyses of the test techniques and applications of maglev flight tunnels[J]. Acta Aerodynamica Sinica, 2021, 39(5): 95–110. doi: 10.7638/kqdlxxb-2021.0206
    [2]
    央视网. 中国新闻: 世界首个电磁橇设施成功运行[Z]. (2022-10-20)[2022-11-01]. https://tv.cctv.com/2022/10/20/VIDEL8dSWULplgfwyAclj1HT221020.shtml.
    [3]
    汤友富. 超级高铁发展趋势及关键问题分析[J]. 铁道建筑技术, 2019(4): 1–4. doi: 10.3969/j.issn.1009-4539.2019.04.001

    TANG Y F. Research on the development trend and analysis of key problems of hyperloop[J]. Railway Construc-tion Technology, 2019(4): 1–4. doi: 10.3969/j.issn.1009-4539.2019.04.001
    [4]
    金茂菁, 黄玲. 超高速真空管道交通技术发展现状与趋势[J]. 科技中国, 2018(3): 13–15. doi: 10.3969/j.issn.1673-5129.2018.03.004

    JIN M J, HUANG L. Development status and trend of ultra-high speed vacuum pipeline transportation technology[J]. China Scitechnology Business, 2018(3): 13–15. doi: 10.3969/j.issn.1673-5129.2018.03.004
    [5]
    黄尊地, 梁习锋, 常宁. 真空管道交通列车气动阻力数值分析[J]. 机械工程学报, 2019, 55(8): 165–172. doi: 10.3901/JME.2019.08.165

    HUANG Z D, LIANG X F, CHANG N. Numerical analysis of train aerodynamic drag of vacuum tube traffic[J]. Journal of Mechanical Engineering, 2019, 55(8): 165–172. doi: 10.3901/JME.2019.08.165
    [6]
    张克锐, 李庆领, 王传伟, 等. 真空管道高速列车气动噪声研究[J]. 真空科学与技术学报, 2019, 39(11): 950–957. doi: 10.13922/j.cnki.cjovst.2019.11.03

    ZHANG K R, LI Q L, WANG C W, et al. Aerodynamic noises of vacuum tube transportation: asimulation and theoretical study[J]. Chinese Journal of Vacuum Science and Technology, 2019, 39(11): 950–957. doi: 10.13922/j.cnki.cjovst.2019.11.03
    [7]
    刘加利, 张继业, 张卫华. 真空管道高速列车气动噪声源特性分析[J]. 真空科学与技术学报, 2013, 33(10): 1026–1031. doi: 10.3969/j.issn.1672-7126.2013.10.14

    LIU J L, ZHANG J Y, ZHANG W H. Simulation of noise source for high speed train in evacuated tube[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(10): 1026–1031. doi: 10.3969/j.issn.1672-7126.2013.10.14
    [8]
    邓自刚, 张勇, 王博, 等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204

    DENG Z G, ZHANG Y, WANG B, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204
    [9]
    中国空气动力研究与发展中心. 磁浮飞行风洞建设项目建议书[R]. 2019.
    [10]
    沈通, 马志文, 杜晓洁, 等. 世界高速磁悬浮铁路发展现状与趋势分析[J]. 中国铁路, 2020(11): 94–99. doi: 10.19549/j.issn.1001-683x.2020.11.094

    SHEN T, MA Z W, DU X J, et al. Development status and trend analysis of high speed maglev railways worldwide[J]. China Railway, 2020(11): 94–99. doi: 10.19549/j.issn.1001-683x.2020.11.094
    [11]
    熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008

    XIONG J Y, DENG Z G. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008
    [12]
    NØLAND J K. Prospects and challenges of the hyperloop transportation system: a systematic technology review[J]. IEEE Access, 2021, 9: 28439–28458. doi: 10.1109/ACCESS.2021.3057788
    [13]
    周鹏, 李田, 张继业, 等. 真空管道超级列车激波簇结构研究[J]. 机械工程学报, 2020, 56(2): 86–97. doi: 10.3901/JME.2020.02.086

    ZHOU P, LI T, ZHANG J Y, et al. Research on shock wave trains generated by the hyper train in the evacuated tube[J]. Journal of Mechanical Engineering, 2020, 56(2): 86–97. doi: 10.3901/JME.2020.02.086
    [14]
    周鹏, 李田, 张继业, 等. 真空管道超级列车气动热效应[J]. 机械工程学报, 2020, 56(8): 190–199. doi: 10.3901/JME.2020.08.190

    ZHOU P, LI T, ZHANG J Y, et al. Aerothermal effect generated by hyper train in the evacuated tube[J]. Journal of Mechanical Engineering, 2020, 56(8): 190–199. doi: 10.3901/JME.2020.08.190
    [15]
    BAO S J, HU X, WANG J K, et al. Numerical study on the influence of initial ambient temperature on the aerodynamic heating in the tube train system[J]. Advances in Aerodyna-mics, 2020, 2(1): 1–18. doi: 10.1186/s42774-020-00053-8
    [16]
    张俊博, 李红梅, 王俊彪, 等. 低真空管道磁悬浮列车温度场数值计算[J]. 真空科学与技术学报, 2021, 41(5): 448–455. doi: 10.13922/j.cnki.cjvst.202010007

    ZHANG J B, LI H M, WANG J B, et al. Numerical analysis of the temperature field of vacuum tube maglev train[J]. Chinese Journal of Vacuum Science and Technology, 2021, 41(5): 448–455. doi: 10.13922/j.cnki.cjvst.202010007
    [17]
    陈大伟, 郭迪龙. 低真空管道磁浮列车气动特性[J]. 力学研究, 2019, 8(2): 109–117. doi: 10.12677/IJM.2019.82013

    CHEN D W, GUO D L. Aerodynamic characteristics of maglev train on low vacuum tube[J]. International Journal of Mechanical Research, 2019, 8(2): 109–117. doi: 10.12677/IJM.2019.82013
    [18]
    魏龙涛, 胡站伟, 杨升科, 等. 真空管道列车悬浮电磁铁散热性能研究[J]. 装备环境工程, 2022, 19(6): 141–146. doi: 10.7643/issn.1672-9242.2022.06.020

    WEI L T, HU Z W, YANG S K, et al. Heat dissipation performance of suspension electromagnet in the evacuated tube[J]. Equipment Environmental Engineering, 2022, 19(6): 141–146. doi: 10.7643/issn.1672-9242.2022.06.020
    [19]
    ZHOU Z W, XIA C, DU X Z, et al. Impact of the isentropic and Kantrowitz limits on the aerodynamics of an evacuated tube transportation system[J]. Physics of Fluids, 2022, 34(6): 066103. doi: 10.1063/5.0090971
    [20]
    YU Q J, YANG X F, NIU J Q, et al. Aerodynamic thermal environment around transonic tube train in choked/unchoked flow[J]. International Journal of Heat and Fluid Flow, 2021, 92: 108890. doi: 10.1016/j.ijheatfluidflow.2021.108890
    [21]
    YU Q J, YANG X F, NIU J Q, et al. Theoretical and numerical study of choking mechanism of fluid flow in Hyperloop system[J]. Aerospace Science and Technology, 2022, 121: 107367. doi: 10.1016/j.ast.2022.107367
    [22]
    HU X, DENG Z G, ZHANG W H. Effect of cross passage on aerodynamic characteristics of super-high-speed evacuated tube transportation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 211: 104562. doi: 10.1016/j.jweia.2021.104562
    [23]
    HU X, DENG Z G, ZHANG J W, et al. Effect of tracks on the flow and heat transfer of supersonic evacuated tube maglev transportation[J]. Journal of Fluids and Structures, 2021, 107: 103413. doi: 10.1016/j.jfluidstructs.2021.103413
    [24]
    HU X, DENG Z G, ZHANG J W, et al. Aerodynamic behaviors in supersonic evacuated tube transportation with different train nose lengths[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122130. doi: 10.1016/j.ijheatmasstransfer.2021.122130
    [25]
    胡啸, 邓自刚, 张银龙, 等. 真空管道磁浮交通管内波系时空分布特征[J]. 空气动力学学报, 2022, 40(6): 146–154. doi: 10.7638/kqdlxxb-2021.0242

    HU X, DENG Z G, ZHANG Y L, et al. Characteristics of spatial and temporal distribution of wave system in evacuated tube maglev transportation[J]. Acta Aerodyna-mica Sinica, 2022, 40(6): 146–154. doi: 10.7638/kqdlxxb-2021.0242
    [26]
    SHEN C. Rarefied gas dynamics: fundamentals, simulations and micro flows[M]. Berlin and Heidelberg: Springer-Verlag, 2005. doi: 10.1007/b138784
    [27]
    SWINBANK W C. Long-wave radiation from clear skies[J]. Quarterly Journal of the Royal Meteorological Society, 1963, 89(381): 339–348. doi: 10.1002/qj.49708938105
    [28]
    POLYAKOV A F. Development of secondary free-convection currents in forced turbulent flow in horizontal tubes[J]. Journal of Applied Mechanics and Technical Physics, 1974, 15(5): 632–637. doi: 10.1007/BF00851521
    [29]
    PETUKHOV B S, POLYAKOV A F, LAUNDER B E. Heat transfer in turbulent mixed convection[M]. New York: Hemisphere Publishing Corporation, 1988. doi: 10.1137/1032068
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views (3202) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return