Volume 37 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
CHENG J H, GUO Y, GUO D L, et al. Slipstream at the tunnel exit induced by a high-speed maglev train passing through a tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 53-63 doi: 10.11729/syltlx20220110
Citation: CHENG J H, GUO Y, GUO D L, et al. Slipstream at the tunnel exit induced by a high-speed maglev train passing through a tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 53-63 doi: 10.11729/syltlx20220110

Slipstream at the tunnel exit induced by a high-speed maglev train passing through a tunnel

doi: 10.11729/syltlx20220110
  • Received Date: 2022-10-26
  • Accepted Date: 2022-12-12
  • Rev Recd Date: 2022-12-02
  • Available Online: 2023-02-13
  • Publish Date: 2023-02-25
  • When the high-speed maglev train enters a tunnel, a compression wave generated by it will induce the air flow at the exit of the tunnel to form an adjoint velocity. The three-dimensional, compressible, unsteady calculation method is used to simulate the process of the high-speed maglev train passing through a tunnel with different blocking ratios under different speeds. The features of the slipstream around the tunnel exit induced by the compression wave are analyzed, and the influence of the train speed and blocking ratio on the slipstream is ascertained. The results show that at the tunnel exit, the trend and the peak speeds of the slipstream induced by the compression wave have no apparent change in the direction of the train’s movement; the peak wind speed of the measuring point outside the tunnel exit gradually decreases in the longitudinal range of 25 m, and basically remains unchanged in the transverse range of 5 m. With the vehicle speed and blocking ratio increasing, the peak wind speeds inside and outside the outlet are raised obviously. When the train speed is 600 km/h and the blocking ratio is 17.04%, the maximum wind speed at 5 m outside the tunnel is up to 56 m/s. This conclusion is helpful to strengthen people's understanding about the harm of the slipstream induced by a train passing through a tunnel, and to provide references for protection against the slipstream in the railway tunnel and the safe operation of maglev train in the future.
  • loading
  • [1]
    任魁山, 李奎, 蒋尧, 等. 中速磁浮列车双线隧道初始压缩波特征的数值模拟研究[J]. 机车电传动, 2020(6): 51–55. doi: 10.13890/j.issn.1000-128x.2020.06.011

    REN K S, LI K, JIANG Y, et al. Numerical simulation of initial compression wave characteristics in double track tunnel of medium speed maglev train[J]. Electric Drive for Locomotives, 2020(6): 51–55. doi: 10.13890/j.issn.1000-128x.2020.06.011
    [2]
    BELL J R, BURTON D, THOMPSON M C, et al. A wind-tunnel methodology for assessing the slipstream of high-speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 166: 1–19. doi: 10.1016/j.jweia.2017.03.012
    [3]
    POPE C W. Effective management of risk from slipstream effects at trackside and platforms[R]. Rail Safety and Standards Board-T425 Report, 2007.
    [4]
    STERLING M, BAKER C J, JORDAN S C, et al. A study of the slipstreams of high-speed passenger trains and freight trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222(2): 177–193. doi: 10.1243/09544097JRRT133
    [5]
    FLYNN D, HEMIDA H, BAKER C, et al. On the effect of crosswinds on the slipstream of a freight train and associated effects[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 156: 14–28. doi: 10.1016/j.jweia.2016.07.001
    [6]
    熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008

    XIONG J Y, DENG Z G. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008
    [7]
    林一平. 我国磁浮列车研制取得重大进展[J]. 交通与运输, 2017, 33(3): 50–53. doi: 10.3969/j.issn.1671-3400.2017.03.020
    [8]
    董婷婷. 高速列车隧道气动性能分析[D]. 成都: 西南交通大学, 2013.

    DONG T T. Study on aerodynamic performance of high-speed trains in the tunnel[D]. Chengdu: Southwest Jiaotong University, 2013. doi: 10.7666/d.Y2575369
    [9]
    李炎, 高孟理, 周鸣镝, 等. 铁路隧道列车活塞风的理论研究与计算方法的探讨[J]. 铁道学报, 2010, 32(6): 140–145. doi: 10.3969/j.issn.1001-8360.2010.06.023

    LI Y, GAO M L, ZHOU M D, et al. Theoretical study and calculation method of train piston wind in railway tunnels[J]. Journal of the China Railway Society, 2010, 32(6): 140–145. doi: 10.3969/j.issn.1001-8360.2010.06.023
    [10]
    HOWE M S. Review of the theory of the compression wave generated when a high-speed train enters a tunnel[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 1999, 213(2): 89–104. doi: 10.1243/0954409991531056
    [11]
    顾红生, 赵毅山. 磁悬浮列车在隧道内影响活塞风速的因素[J]. 同济大学学报: 自然科学版, 2003, 31(3): 324–328. doi: 10.3321/j.issn:0253-374X.2003.03.016

    GU H S, ZHAO Y S. Effects on piston wind velocity of maglev in tunnel[J]. Journal of Tongji University: Natural Science, 2003, 31(3): 324–328. doi: 10.3321/j.issn:0253-374X.2003.03.016
    [12]
    余南阳. 高速铁路隧道压力波数值模拟和模型试验研究[D]. 成都: 西南交通大学, 2004.

    YU N Y. A study on numerical simulation and model experiment of the pressure waves of the high-speed trains through tunnels[D]. Chengdu: Southwest Jiaotong Univer-sity, 2004.
    [13]
    SAKUMA Y, SUZUKI M, IDO A, et al. Measurement of air velocity and pressure distributions around high-speed trains on board and on the ground (boundary problem, technical session)[J]. The Proceedings of International Symposium on Seed-Up and Service Technology for Railway and Maglev Systems:STECH, 2009, 2009: 360769–1. doi: 10.1299/jsmestech.2009._360769-1_
    [14]
    刘峰, 姚松, 刘堂红, 等. 高速铁路隧道壁面气动压力实车试验分析[J]. 浙江大学学报: 工学版, 2016, 50(10): 2018–2024. doi: 10.3785/j.issn.1008-973X.2016.10.024

    LIU F, YAO S, LIU T H, et al. Analysis on aerodynamic pressure of tunnel wall of high-speed railways by full-scale train test[J]. Journal of Zhejiang University: Engineering Science, 2016, 50(10): 2018–2024. doi: 10.3785/j.issn.1008-973X.2016.10.024
    [15]
    方雨菲, 马伟斌, 程爱君, 等. 隧道附属设施气动效应分析[J]. 铁道建筑, 2022, 62(4): 102–106. doi: 10.3969/j.issn.1003‐1995.2022.04.25

    FANG Y F, MA W B, CHENG A J, et al. Analysis on aerodynamic effect of tunnel auxiliary facilities[J]. Railway Engineering, 2022, 62(4): 102–106. doi: 10.3969/j.issn.1003‐1995.2022.04.25
    [16]
    刘堂红, 田红旗, 金学松. 隧道空气动力学实车试验研究[J]. 空气动力学学报, 2008, 26(1): 42–46. doi: 10.3969/j.issn.0258-1825.2008.01.008

    LIU T H, TIAN H Q, JIN X S. Experimental study of full-scale train on aerodynamics in tunnel[J]. Acta Aerodyna-mica Sinica, 2008, 26(1): 42–46. doi: 10.3969/j.issn.0258-1825.2008.01.008
    [17]
    梅元贵. 高速铁路隧道压力波数值模拟研究[D]. 成都: 西南交通大学, 1997.

    MEI Y G. Numerical simulation of pressure wave in high-speed railway tunnel[D]. Chengdu: Southwest Jiaotong Uni-versity, 1997.
    [18]
    牛纪强. 高速列车通过隧道时产生的列车风研究[J]. 铁道科学与工程学报, 2015, 12(6): 1268–1276. doi: 10.3969/j.issn.1672-7029.2015.06.002

    NIU J Q. Research on gusts caused by high-speed trains passing through tunnel[J]. Journal of Railway Science and Engineering, 2015, 12(6): 1268–1276. doi: 10.3969/j.issn.1672-7029.2015.06.002
    [19]
    王磊, 骆建军, 李飞龙. 高速列车过双线隧道气动效应及列车风特性[J]. 哈尔滨工业大学学报, 2021, 53(9): 43–52. doi: 10.11918/202011011

    WANG L, LUO J J, LI F L. Aerodynamic effects and train wind characteristics of high-speed train passing through double-track tunnel[J]. Journal of Harbin Institute of Tech-nology, 2021, 53(9): 43–52. doi: 10.11918/202011011
    [20]
    王磊, 骆建军, 李飞龙, 等. 高速铁路双线隧道内列车风分布及流场特性[J]. 中南大学学报: 自然科学版, 2021, 52(4): 1346–1357. doi: 10.11817/j.issn.1672-7207.2021.04.031

    WANG L, LUO J J, LI F L, et al. Train-induced wind distribution and flow field characteristics in high-speed railway double-track tunnel[J]. Journal of Central South University: Science and Technology, 2021, 52(4): 1346–1357. doi: 10.11817/j.issn.1672-7207.2021.04.031
    [21]
    朴荣焕, 张继业, 李田. 时速100公里级地铁车辆通过隧道时引起的活塞风仿真研究[J]. 机械, 2021, 48(11): 41–48. doi: 10.3969/j.issn.1006-0316.2021.11.006

    PIAO R H, ZHANG J Y, LI T. Simulation study on piston wind caused by 100 km/h metro vehicles passing through tunnels[J]. Machinery, 2021, 48(11): 41–48. doi: 10.3969/j.issn.1006-0316.2021.11.006
    [22]
    管鸿浩, 龚彦峰, 踪敬良, 等. 高速列车单列通过时双线隧道内列车风分布规律研究[J]. 铁道标准设计, 2022, 66(6): 83–89. doi: 10.13238/j.issn.1004-2954.202105160002

    GUAN H H, GONG Y F, ZONG J L, et al. Study on the slipstream distribution by a single train running through a double-track tunnel[J]. Railway Standard Design, 2022, 66(6): 83–89. doi: 10.13238/j.issn.1004-2954.202105160002
    [23]
    YAO S B, SUN Z X, GUO D L, et al. Numerical study on wake characteristics of high-speed trains[J]. Acta Mechanica Sinica, 2013, 29(6): 811–822. doi: 10.1007/s10409-013-0077-3
    [24]
    柳润东, 毛军, 郗艳红. 高速铁路风障在横风与列车风耦合作用下的气动特性研究[J]. 振动与冲击, 2018, 37(3): 153–159,166. doi: 10.13465/j.cnki.jvs.2018.03.025

    LIU R D, MAO J, XI Y H. Aerodynamic load features of windbreaks of high speed railway under coupled action of cross wind and high speed train wind[J]. Journal of Vibration and Shock, 2018, 37(3): 153–159,166. doi: 10.13465/j.cnki.jvs.2018.03.025
    [25]
    European Committee for Standardization. BS EN 14067-5: 2006+A1: 2010 Railway applications - Aerodynamics - Part 5: Requirements and test procedures for aerodynamics in tunnels[S]. Brussels: CEN, 2010.
    [26]
    BELL J R, BURTON D, THOMPSON M C, et al. Moving model analysis of the slipstream and wake of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 136: 127–137. doi: 10.1016/j.jweia.2014.09.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)

    Article Metrics

    Article views (2987) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return